Yaskawa MP920 Motion Module User Manual

Browse online or download User Manual for Equipment Yaskawa MP920 Motion Module. Yaskawa MP920 Motion Module User Manual

  • Download
  • Add to my manuals
  • Print
  • Page
    / 450
  • Table of contents
  • TROUBLESHOOTING
  • BOOKMARKS
  • Rated. / 5. Based on customer reviews

Summary of Contents

Page 1 - USER'S MANUAL

YASKAWA MANUAL NO. SIEZ-C887-2.5CYASKAWAUSER'S MANUALMachine Controller MP920Motion Module

Page 2

x GeneralAlways note the following to ensure safe use.• MP920 was not designed or manufactured for use in devices or systems directly related to

Page 3 - Using this Manual

2 Motion Control2.4.7 Fixed Speed Feed (FEED)2-742.4.7 Fixed Speed Feed (FEED) OverviewThis command performs rapid traverse in the infinite length

Page 4

2.4 Position Control Using Motion Commands2-752The axis performs fixed speed feed using the specified motion parameter.Fixed speed feed cannot be tem

Page 5 -  Related Manuals

2 Motion Control2.4.7 Fixed Speed Feed (FEED)2-76 User Program Example: Fixed Speed FeedExample of RUN OperationLadder Logic Program ExampleFig. 2.

Page 6 - Safety Information

2.4 Position Control Using Motion Commands2-7722.4.8 Fixed Length Feed (STEP) OverviewThis command positions the axis at rapid traverse speed in the

Page 7 - Safety Precautions

2 Motion Control2.4.8 Fixed Length Feed (STEP)2-78The axis performs positioning using the specified motion parameter. Even during fixed length feed

Page 8 - MANDATORY

2.4 Position Control Using Motion Commands2-7926. Once positioning has been completed, clear the fixed length feed motion command.Note: Fixed length

Page 9 - PROHIBITED

2 Motion Control2.4.8 Fixed Length Feed (STEP)2-80Ladder Logic Program ExampleThe example in the above illustration has been greatly simplified. In

Page 10 -  General

2.4 Position Control Using Motion Commands2-8122.4.9 Zero Point Setting (ZSET) OverviewWhen the zero point setting is executed, the current position

Page 11 - CONTENTS

2 Motion Control2.4.9 Zero Point Setting (ZSET)2-823. Set the zero point setting (ZSET = 9) in the motion command code (OW20).Note: Servo ON (bit

Page 12 - 4 Parameters

3-133Motion Module Allocations and SetupThis chapter describes how to set Motion Module configuration definitions and individual Module definitions.3.

Page 13 - 9 Application Precautions

xiCONTENTSUsing this Manual- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - iiiSafety Information - - - - - - - - - - -

Page 14 - Revision History

3 Motion Module Allocations and Setup3.1.1 Motion Module Allocation Method3-23.1 Allocations and Configuration DefinitionsThis section describes the

Page 15 - Overview of Motion Modules

3.1 Allocations and Configuration Definitions3-33 Defining the Module ConfigurationAfter using the Module Definition Window to define the Modules to

Page 16 - 1.1.1 Motion Modules

3 Motion Module Allocations and Setup3.1.2 Setting Module Definitions3-43.1.2 Setting Module DefinitionsSet the Module types, control CPU numbers, c

Page 17 - 1.1.2 SVA-01A Module

3.1 Allocations and Configuration Definitions3-53Cir No (Circuit Number)For Motion Modules, circuit numbers are treated as Module numbers. When using

Page 18 - 1.1.3 SVA-02A Module

3 Motion Module Allocations and Setup3.1.3 Saving Module Definitions3-63.1.3 Saving Module DefinitionsSave the module configuration data after makin

Page 19 - SERVOPACK

3.2 Individual Module Definitions3-733.2 Individual Module DefinitionsThis section describes MECHATROLINK definitions and motion parameter settings a

Page 20 - 1.1.4 SVB-01 Module

3 Motion Module Allocations and Setup3.2.1 MECHATROLINK Definitions3-8When the MECHATROLINK Definition Window is initially opened, clicking the I/O

Page 21 - JEPMC-IO350

3.2 Individual Module Definitions3-93Assignment ExampleIn the following example, SGD-***N is assigned to stations 01 to 04, and JEPMC-IO300 is assign

Page 22 - 1.1.5 PO-01 Module

3 Motion Module Allocations and Setup3.2.2 Setting Motion Parameters3-103.2.2 Setting Motion ParametersMotion parameters must be specified separatel

Page 23 - 1.2 System Configuration

3.2 Individual Module Definitions3-113 Saving Motion ParameterUse the following procedure to save motion parameters.1. Select File (F) and then Save

Page 24 - 1.3 Specifications

xii3 Motion Module Allocations and Setup3.1 Allocations and Configuration Definitions - - - - - - - - - - - - - - 3-23.1.1 Motion Module Allo

Page 25 - 1.3.2 Function Lists

3 Motion Module Allocations and Setup3.2.2 Setting Motion Parameters3-12 Monitoring ParametersThe monitoring parameters are the registers reference

Page 26 - 1.3.2 Function Lists

4-144ParametersThis chapter describes the procedure for setting the parameters needed to run the MP920.4.1 Overview of Parameters - - - - - - - - -

Page 27 - Motion Control

4 Parameters4.1.1 Parameter Classifications4-24.1 Overview of ParametersThis section outlines the parameters critical to Module motion functions. Th

Page 28

4.1 Overview of Parameters4-34 Editing ParametersThe following table describes the procedures used to create, edit, or change parameters.4.1.2 Modul

Page 29

4 Parameters4.1.2 Modules and Motion Parameter Registers4-4The following table summarizes the above information.The number of controlled axes per Mo

Page 30 - 2.1.2 Motion Control Methods

4.2 Parameter List by Module4-544.2 Parameter List by ModuleThis section describes the meaning and availability of each parameter according to the mo

Page 31 - Winder B

4 Parameters4.2.1 Motion Fixed Parameters4-67 Rated Motor Speed Setting(NR)1 to 32000(Default = 3000)1 = 1 min-1√√√√8 Number of Feed-back Pulses Per

Page 32 - Conveyor

4.2 Parameter List by Module4-7414 Additional Func-tion Selections (AFUNCSEL)(cont’d)Bit 9 Selection for Feedback Pulses per Motor Rotation for High-

Page 33 - 2.2 Control Modes

4 Parameters4.2.1 Motion Fixed Parameters4-818 Number of Digits Below Decimal Point (DECNUM)0 to 5(Default = 3)Sets the number of digits right of th

Page 34

4.2 Parameter List by Module4-94Note: √: Available, −: Not available33Number of Feed-back Pulses Per Rotation(For simulation)1 to 231-1(Default = 200

Page 35 - 2.2 Control Modes

xiii6.2 SVB-01 Parameters - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6-166.2.1 Motion Fixed Parameters - - - - - - - - - - - - - - -

Page 36 -  User Program Examples

4 Parameters4.2.2 Motion Setting Parameters4-104.2.2 Motion Setting ParametersMotion setting parameters serve as instructions to Motion Modules. The

Page 37

4.2 Parameter List by Module4-1142 RUN Command Settings (SVRUNCMD)(cont’d)OW01 Bit 11: EMRST Emergency Stop and Deceleration Stop Signal Reset−−−√B

Page 38

4 Parameters4.2.2 Motion Setting Parameters4-1215 Positioning Completed Range Setting (PEXT)OW0E 0 to 65535(Absolute value)(Default = 10)1 = 1 ref

Page 39

4.2 Parameter List by Module4-13429 Speed Limit Setting(NLIM)OW1C -32768 to 32767(Default = 15000)1 = 0.01%(15000 = 150.00%)−√−−30 Speed Loop Gain(

Page 40 -  User Program Example

4 Parameters4.2.2 Motion Setting Parameters4-1433 Motion Command Code (MCMDCODE)(cont’d)OW20 0 to 65535(Default = 0)20: AMHIST_MON Monitor current

Page 41 - Cam machine

4.2 Parameter List by Module4-15435 Rapid Traverse Speed(RV)OL220 to 231 -1(Default = 3000)1 = 10n reference units/min (n = Number of digits below

Page 42

4 Parameters4.2.2 Motion Setting Parameters4-1647 Workpiece Coor-dinate System Offset(OFFSET)OL2E-231 to 231-1(Default = 0)1 = 1 reference unit 1

Page 43

4.2 Parameter List by Module4-174* Available for SERVOPACK SGDH+NS100 only.Note: √: Available, −: Not available59 Upper-place Two Words of the Encod

Page 44 - Integra

4 Parameters4.2.3 Motion Monitoring Parameters4-184.2.3 Motion Monitoring ParametersMotion monitoring parameters are parameters reported by Motion M

Page 45

4.2 Parameter List by Module4-1949 Machine Coor-dinate System Feedback Posi-tion (APOS)IL08-231 to 231-11 = 1 reference unit(1 = 1 pulse for pulse

Page 46 - 2.2.4 Phase Control Mode

xiv9.3 Software Limit Function - - - - - - - - - - - - - - - - - - - - - - - - - 9-169.3.1 Overview- - - - - - - - - - - - - - - - - - - - - -

Page 47

4 Parameters4.2.3 Motion Monitoring Parameters4-2024 Position Control Status(POSSTS)IW17 Bit 0: MLKL Machine Locked√√√√Bit 1: ZERO Zero Point Posi

Page 48 - 2.2.5 Zero Point Return Mode

4.2 Parameter List by Module4-21435 Alarms (ALARM)(cont’d)IL22 Bit 11: ZSET_NRDYZero Point Not Set√√√−Bit 12: ZSET_MOVZero Point Set during Travel−

Page 49

4 Parameters4.2.3 Motion Monitoring Parameters4-22Note: √: Available, −: Not available43 Position Refer-ence Output Monitor(XREFMON)IL2A-231 to 23

Page 50

5-155SVA Module Specifications andHandlingThis chapter describes the specifications and handling of the SVA Modules.5.1 SVA-01A Module - - - - - - -

Page 51 - Operating Conditions

5 SVA Module Specifications and Handling5.1.1 Hardware Specifications5-25.1 SVA-01A ModuleThis section describes the specifications and handling of

Page 52 - 2.3 Position Control

5.1 SVA-01A Module5-35* The SVA-01A Module does not support brake control and does not have the registers for brake control (OW). The brake cont

Page 53

5 SVA Module Specifications and Handling5.1.2 Handling5-4 LED IndicatorThe STATUS indicator is a 7-segment LED indicator that displays the RUN/erro

Page 54 -  Reference Unit

5.1 SVA-01A Module5-55Serious fault A two-digit error code appears following F. Examples: F → 0 → 1: Watchdog time overF → 0 → 2: Synchronization err

Page 55 -  Electronic Gear

5 SVA Module Specifications and Handling5.1.2 Handling5-6 Servo Connectors (CN1 to CN4) External Interface Connector Connector SpecificationsThe

Page 56

5.1 SVA-01A Module5-75 Connector Pin Layout (CN1 to CN4)The pin layout of the CN1 to CN4 connectors are shown below.Note: Although the connector ori

Page 57 - 2.3 Position Control

1-111Overview of Motion ModulesThis chapter provides an overview of the Motion Modules and describes their features.1.1 Module Overview and Features

Page 58 -  Axis Selection

5 SVA Module Specifications and Handling5.1.2 Handling5-8The following table shows the names and functions of the pins of the CN1 to CN4 connec-tors

Page 59 -  Position Reference

5.1 SVA-01A Module5-95 Connector Pin Layout (CN5)The pin layout of the CN5 connector is shown below.50492524262712CN5 50-pin ConnectorPin Layout on

Page 60 -  Position Buffers

5 SVA Module Specifications and Handling5.1.2 Handling5-10The following table shows the name and function of the CN5 connector pins.Pin Signal NameF

Page 61 - Writing to Position Buffers

5.1 SVA-01A Module5-115 Standard CablesThe following standard cables are available for use with the 4-axis Servo Module (SVA-01A). Use these cables

Page 62 - Reading Position Buffers

5 SVA Module Specifications and Handling5.1.2 Handling5-12 SGDA-S SERVOPACK Connecting CablesModelsJEPMC-W6040-05: 0.5 mJEPMC-W6040-10: 1.0 mJEP

Page 63 -  Position Monitoring

5.1 SVA-01A Module5-135Example of Connections to SGDA-S SERVOPACK470Ω4.7kΩ680ΩTo external I/F(CN5) BRK OUTFromexternal I/FAnalog outputPulse input

Page 64 -  Speed Reference

5 SVA Module Specifications and Handling5.1.2 Handling5-14 SGDB/SGDM/SGDS SERVOPACK Connecting CablesModelsJEPMC-W6050-05: 0.5 mJEPMC-W6050-10: 1.0

Page 65 - When Motion Commands Are Used

5.1 SVA-01A Module5-155Example of Connections to SGDB-/SGDM/SGDS SERVOPACKConnection Example Using JEPMC-W6050- Cables470Ω4.7kΩ680ΩAnalog outputP

Page 66 - Parameter Setting Examples

5 SVA Module Specifications and Handling5.1.2 Handling5-16The following SERVOPACK parameters must be set to use brake signals.• Specify whether to

Page 67

5.1 SVA-01A Module5-175Example of Connections to External DevicesBAT0BAT0V+24VOTFOTRDECZEROEXTRI0VBRKRO+24VOTFOTRDECZEROEXTRI0VBRKRO+24VOTFOTRDECZERO

Page 68

1 Overview of Motion Modules1.1.1 Motion Modules1-21.1 Module Overview and FeaturesThis section provides an overview of the Motion Modules and descr

Page 69 - Setting (ABSOFF)

5 SVA Module Specifications and Handling5.1.2 Handling5-18 Connection of SERVOPACK and ServomotorUse the special cable and encoder cable to connect

Page 70

5.1 SVA-01A Module5-195Connection with SGDB SERVOPACKSW1L.RSTRUNINITTESTMULTIFLASHM.RSTONOFFON12345678PORT2PORT1CN1RLY OUTBATTERYRDYPRT1RUNALMERRBAT

Page 71

5 SVA Module Specifications and Handling5.1.2 Handling5-20Connection with Single-phase SGDM SERVOPACKEncoder cableSW1L.RSTRUNINITTESTMULTIFLASHM.RST

Page 72

5.1 SVA-01A Module5-215Connection with Three-phase SGDM SERVOPACKEncoder cableSW1L.RSTRUNINITTESTMULTIFLASHM.RSTONOFFON12345678PORT2PORT1CN1RLY OUTB

Page 73 - NOP command

5 SVA Module Specifications and Handling5.1.2 Handling5-22Connection with Single-phase SGDS SERVOPACKEncoder cableSW1L.RSTRUNINITTESTMULTIFLASHM.RST

Page 74 - 2.4.2 Positioning (POSING)

5.1 SVA-01A Module5-235Connection with Three-phase SGDS SERVOPACKEncoder cableSW1L.RSTRUNINITTESTMULTIFLASHM.RSTONOFFON12345678PORT2PORT1CN1RLY OUTB

Page 75

5 SVA Module Specifications and Handling5.2.1 Hardware Specifications5-245.2 SVA-02A ModuleThis section describes the specifications and handling of

Page 76

5.2 SVA-02A Module5-2555.2.2 HandlingThe following illustration shows the appearance of the SVA-02A Module.LED indicatorServo connectorCN1Servo conne

Page 77

5 SVA Module Specifications and Handling5.2.2 Handling5-26 LED IndicatorThe STATUS indicator is a 7-segment LED indicator that displays the RUN/err

Page 78

5.2 SVA-02A Module5-275Serious fault A two-digit error code appears following “F.”Examples: F →  → 1F → 0 → 1: Watchdog time overF → 0 → 2: Synchron

Page 79

1.1 Module Overview and Features1-311.1.2 SVA-01A Module Overview of the SVA-01A ModuleThe SVA-01A Module is a Motion Control Module with analog out

Page 80

5 SVA Module Specifications and Handling5.2.2 Handling5-28 Servo Connectors (CN1 and CN2)j 24 V Input Connector (CN3)Connect the +24 VDC Servo I/O

Page 81

5.2 SVA-02A Module5-295 Procedure for Preparing 24 V Input CableUse a twisted-pair cable with a wire size of AWG#24 to AWG#20 (0.2 to 0.51 mm2) to c

Page 82 - Deceleration limit switch

5 SVA Module Specifications and Handling5.2.2 Handling5-30 Connector Pin Layout (CN1 and CN2)The pin layout of the CN1 and CN2 connectors are shown

Page 83 -  DEC1 + Phase-C Pulse

5.2 SVA-02A Module5-315The following table shows the name and function of the pins of the CN1 and CN2 connec-tors.Both 5 V and 24 V can be used for t

Page 84 -  DEC2 + Phase-C Pulse

5 SVA Module Specifications and Handling5.2.2 Handling5-32 Standard CablesThe following standard cables are available for use with the 2-axis Servo

Page 85

5.2 SVA-02A Module5-335Cable Connection Diagram12345678910111215161718192021222324252627282930313233343536FG232021242543515133465292822231814FGGND/GN

Page 86 -  DEC1 + LMT + Phase-C Pulse

5 SVA Module Specifications and Handling5.2.2 Handling5-34Example of Connections to SGDA-S SERVOPACKConnection Example Using JEPMC-W6070- Cable

Page 87

5.2 SVA-02A Module5-355 SGDB-/SGDM/SGDS SERVOPACK Connecting CablesModelsJEPMC-W6071-05: 0.5 mJEPMC-W6071-10: 1.0 mJEPMC-W6071-30: 3.0 mAppearance

Page 88

5 SVA Module Specifications and Handling5.2.2 Handling5-36Example of Connections to SGDB-/SGDM/SGDS SERVOPACKsConnection Example Using JEPMC-W6071

Page 89 -  DEC2 + ZERO Signal Method

5.2 SVA-02A Module5-375 Connection of SERVOPACK and ServomotorUse the special cable and encoder cable to connect the SERVOPACK and Servomotor.Connec

Page 90 -  ZERO Signal Method

1 Overview of Motion Modules1.1.3 SVA-02A Module1-4 Features of the SVA-01A Module• Analog-output 4-axis Servo Module• Independent position contr

Page 91

5 SVA Module Specifications and Handling5.2.2 Handling5-38Connection with SGDB SERVOPACK3CN4CN6CNOPERATORSERVOPACKSGDB-15ADPOWERALARM5CN1SW1CN2CNCHA

Page 92

5.2 SVA-02A Module5-395Connection with Single-phase SGDM SERVOPACKEncoder cableTo 1CN or 2CNSGDM SERVOPACK (single-phase)RTNoise filterPower supplyse

Page 93

5 SVA Module Specifications and Handling5.2.2 Handling5-40Connection with Three-phase SGDM SERVOPACKTo 1CN or 2CNSGDM SERVOPACK (three-phase)UVWETo

Page 94

5.2 SVA-02A Module5-415Connection with Single-phase SGDS SERVOPACKEncoder cableTo 1CN or 2CNSGDS SERVOPACK (single-phase)RTNoise filterPower supplyse

Page 95

5 SVA Module Specifications and Handling5.2.2 Handling5-42Connection with Three-phase SGDS SERVOPACKTo 1CN or 2CNSGDS SERVOPACK (three-phase)UVWETo

Page 96

5.3 Differences between SVA-01A and SVA-02A Modules5-4355.3 Differences between SVA-01A and SVA-02A ModulesThis section describes differences between

Page 97

5 SVA Module Specifications and Handling5.3.2 Differences in Servo Connectors5-445.3.2 Differences in Servo ConnectorsThe following table shows diff

Page 98

5.3 Differences between SVA-01A and SVA-02A Modules5-455(cont’d)Pin Signal NameSVA-01A SVA-02A Pin Signal NameSVA-01A SVA-02A19 SG Ground (for SEN si

Page 99

5 SVA Module Specifications and Handling5.3.3 Differences in External I/O Signals5-465.3.3 Differences in External I/O SignalsEach signal of the CN5

Page 100 - Rapid traverse

5.3 Differences between SVA-01A and SVA-02A Modules5-4755.3.4 Precautions on Connecting the SVA-02A ModuleObserve the following precautions when conn

Page 101

1.1 Module Overview and Features1-51 Features of the SVA-02A Module• Analog-output 2-axis Servo Module• Independent position control, speed refere

Page 102 - Ladder Logic Program Example

5 SVA Module Specifications and Handling5.3.5 Connection with SGDA-S SERVOPACK5-485.3.5 Connection with SGDA-S SERVOPACK SVA-01A ModuleSERVOP

Page 103 -  Details

5.3 Differences between SVA-01A and SVA-02A Modules5-495The following signal terminals connected to external I/O connectors are connected to the serv

Page 104 - 2 Motion Control

5 SVA Module Specifications and Handling5.3.5 Connection with SGDA-S SERVOPACK5-50 SVA-02A ModuleRWVUT1CNSG SG 1 2NREFV-REF 2 3PA PAO 320PAL /PA

Page 105 - STEP travel

5.3 Differences between SVA-01A and SVA-02A Modules5-515The following signals for the SVA-02A Module are different from those for the SVA-01A Module.

Page 106

5 SVA Module Specifications and Handling5.4.1 Motion Fixed Parameters5-525.4 SVA-01A and SVA-02A ParametersThis section details various parameters u

Page 107

5.4 SVA-01A and SVA-02A Parameters5-5355 Pulse Counting Mode Selection (PULMODE)Set the pulse counting method. Set one of the following seven modes t

Page 108

5 SVA Module Specifications and Handling5.4.1 Motion Fixed Parameters5-5414 Additional Function Selections(AFUNCSEL)Set additional functions, such a

Page 109

5.4 SVA-01A and SVA-02A Parameters5-55516 Simulation Mode Selection (SIMULATE)0: Normal operation mode1: Simulation mode2: Factory adjustment modeNor

Page 110 -  Module Allocations

5 SVA Module Specifications and Handling5.4.1 Motion Fixed Parameters5-5617 Bit 6 Backlash Compensa-tion Enabled Selec-tion (USE_BKRSH)Set whether o

Page 111 - IMPORTANT

5.4 SVA-01A and SVA-02A Parameters5-57519 Travel Distance Per Machine Rotation (PITCH)Set the load travel distance (reference unit) per load axis rot

Page 112 - Control CPU No

Copyright © 1999 YASKAWA ELECTRIC CORPORATIONAll rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or tra

Page 113 - I/O Start Register

1 Overview of Motion Modules1.1.4 SVB-01 Module1-61.1.4 SVB-01 Module Overview of the SVB-01 ModuleThe SVB-01 Module has a single MECHATROLINK conn

Page 114

5 SVA Module Specifications and Handling5.4.1 Motion Fixed Parameters5-5823 Infinite Length Axis Reset Position (POSMAX)Set the reset position for a

Page 115 - Transmission Parameters

5.4 SVA-01A and SVA-02A Parameters5-595The following zero point return methods are available. 0: DEC 1 + Phase-C PulseThis method has three speed le

Page 116 - Setting Assignments

5 SVA Module Specifications and Handling5.4.1 Motion Fixed Parameters5-60 3: Phase-C PulseThis method uses just the Phase-C pulse of the Servomotor

Page 117 - Assignment Example

5.4 SVA-01A and SVA-02A Parameters5-615 7: DEC 1 + LMT + Phase-C PulseThis method gets the current position from the forward/reverse LMT signal and

Page 118

5 SVA Module Specifications and Handling5.4.2 Motion Setting Parameters5-625.4.2 Motion Setting Parameters Supplemental Explanation 11. The priorit

Page 119 -  Setting Setting Parameters

5.4 SVA-01A and SVA-02A Parameters5-635b) Torque Reference Output ModeIf the RUN signal turns OFF, 0 is output immediately as the speed reference, OF

Page 120 -  Monitoring Parameters

5 SVA Module Specifications and Handling5.4.2 Motion Setting Parameters5-64* These bits can be used in various applications because they are genera

Page 121 - Parameters

5.4 SVA-01A and SVA-02A Parameters5-655 Supplemental Explanation 21. SVA-01A (4-axis Servo) Module2. SVA-02A (2-axis Servo) ModuleRefer to 5.1 SVA-

Page 122 - 4.1 Overview of Parameters

5 SVA Module Specifications and Handling5.4.2 Motion Setting Parameters5-66Table 5.6 Motion Setting Parameters (cont’d)No. Name RegisterNumberSetti

Page 123 -  Editing Parameters

5.4 SVA-01A and SVA-02A Parameters5-6752 RUN Refer-ence Settings (SVRUNCMD)(cont’d)Bit 14 Speed Reference Type (XREFTYPE)Set the type of data for OL

Page 124

1.1 Module Overview and Features1-71 Features of the SVB-01 Module• By using the MECHATROLINK high-speed field network interface, up to 14 axes can

Page 125 - 4.2 Parameter List by Module

5 SVA Module Specifications and Handling5.4.2 Motion Setting Parameters5-68 Supplemental Explanation 31. Procedure for Using the Zero Point Offseta

Page 126

5.4 SVA-01A and SVA-02A Parameters5-695 OLC006 - DL00022 ⇒ OLC006Open the Register List Window and set DL00022 to 120 from the MP920 Pro-gramming Pan

Page 127

5 SVA Module Specifications and Handling5.4.2 Motion Setting Parameters5-70Table 5.6 Motion Setting Parameters (cont’d)No. Name RegisterNumberSetti

Page 128

5.4 SVA-01A and SVA-02A Parameters5-715 Acceleration/Deceleration TypeAcceleration/deceleration is broadly classified as linear, S-curve and exponen

Page 129

5 SVA Module Specifications and Handling5.4.2 Motion Setting Parameters5-72Table 5.6 Motion Setting Parameters (cont’d)No. Name RegisterNumberSetti

Page 130

5.4 SVA-01A and SVA-02A Parameters5-73519 Position Refer-ence Setting (XREF) or Position Buffer NumberOL12-231 to 231-1Set the position reference.

Page 131

5 SVA Module Specifications and Handling5.4.2 Motion Setting Parameters5-7422 Speed Refer-ence Setting (NREF)OW15 -32768 to 32767 Speed Reference

Page 132

5.4 SVA-01A and SVA-02A Parameters5-75529 Speed Limit Setting (NLIM)OW1C -32768 to 32767 Set the speed limit in 0.01% units in Torque Reference Out

Page 133

5 SVA Module Specifications and Handling5.4.2 Motion Setting Parameters5-7634 Motion Com-mand Control Flags(MCMDCTRL)OW21 Set motion command auxil

Page 134

5.4 SVA-01A and SVA-02A Parameters5-77534 Motion Com-mand Control Flag (MCMDCTRL) (cont’d)Bit 13 Forward Limit Signal for Zero Point Return (LMT_R)Th

Page 135

1 Overview of Motion Modules1.1.5 PO-01 Module1-81.1.5 PO-01 Module Overview of the PO-01 ModuleThe PO-01 Module is a Motion Control Module with pu

Page 136 - (OFFSET)

5 SVA Module Specifications and Handling5.4.2 Motion Setting Parameters5-7843 Zero Point Re-turn Final Travel Distance (ZRNDIST)OL2A-231 to 231-1T

Page 137

5.4 SVA-01A and SVA-02A Parameters5-79546 Position Con-trol Flags (POSCTRL)(cont’d)Bit 1 Request for the Preset Number of POSMAX Turns (TPRSREQ)Reque

Page 138

5 SVA Module Specifications and Handling5.4.2 Motion Setting Parameters5-8052 Zero Point Po-sition Output Width(PSETWIDTH)OW33 0 to 65535 Used whe

Page 139

5.4 SVA-01A and SVA-02A Parameters5-81557 Lower-place Two Words of Encoder Posi-tion at Shut-down or Position Buffer Access NumberOL38-231 to 231-1

Page 140

5 SVA Module Specifications and Handling5.4.2 Motion Setting Parameters5-8261 Lower-place Two Words of Pulse Position at Shutdown (aposL)OL3C-231

Page 141

5.4 SVA-01A and SVA-02A Parameters5-8355.4.3 Motion Monitoring ParametersTable 5.7 Motion Monitoring Parameters No. Name RegisterNumberSetting Range

Page 142

5 SVA Module Specifications and Handling5.4.3 Motion Monitoring Parameters5-841 RUN Status (RUNSTS)(ccont’d)Bit 7 Motion Control-ler RUN Ready (SVCR

Page 143 - Handling

5.4 SVA-01A and SVA-02A Parameters5-8552 General-pur-pose DI Monitor (SVSTS)IW01 Monitors the status of input signals or general-purpose DI signals

Page 144 - 24 VDC ±2%

5 SVA Module Specifications and Handling5.4.3 Motion Monitoring Parameters5-86 Supplemental Explanation 41. The following example shows when these

Page 145 - 5.1.2 Handling

5.4 SVA-01A and SVA-02A Parameters5-875* 1. DI Latch Request = operating mode (OW00, bit 3)* 2. DI Latch Completed Signal = operating status (IW

Page 146 -  LED Indicator

1.2 System Configuration1-911.2 System Configuration1.2.1 System Configuration ExamplesThe MP920 Motion Modules are available with analog outputs, pu

Page 147 - 5.1 SVA-01A Module

5 SVA Module Specifications and Handling5.4.3 Motion Monitoring Parameters5-889 Machine Coor-dinate System Feedback PositionIL08-231 to 231-1Indic

Page 148 -  Connector Specifications

5.4 SVA-01A and SVA-02A Parameters5-89522 Motion Com-mand Status (MCMDSTS)(cont’d)Bit 1 Command Hold Completed Flag (HOLDL)Turns ON when a HOLD is co

Page 149 - CN3/CN4 36-pin Connecto

5 SVA Module Specifications and Handling5.4.3 Motion Monitoring Parameters5-9024 Position Con-trol Status (POSSTS)(cont’d)Bit 4 Preset Request for N

Page 150

5.4 SVA-01A and SVA-02A Parameters5-91535 Alarms (ALARM)(cont’d)Bit 3 Positive Software Limit (SOTF)Va l i d i f I B156: Zero Point Return Comple

Page 151 -  Connector Pin Layout (CN5)

5 SVA Module Specifications and Handling5.4.3 Motion Monitoring Parameters5-9237 Servo Driver Alarm Code (SVALARM)IW24 -32768 to 32767 Indicates t

Page 152 - 5.1.2 Handling

5.4 SVA-01A and SVA-02A Parameters5-93557 Lower-place 2 Words of Encoder Posi-tion at ShutdownIL38-231 to 231-1These parameters are used for ABS sy

Page 153 -  Standard Cables

6-166SVB Module Specifications andHandlingThis chapter describes the specifications and handling of the SVB-01 Module.6.1 SVB-01 Module - - - - - -

Page 154 - Cable Connection Diagram

6 SVB Module Specifications and Handling6.1.1 Hardware Specifications6-26.1 SVB-01 ModuleThis section describes the specifications and handling of t

Page 155

6.1 SVB-01 Module6-366.1.2 HandlingThe following illustration shows the appearance of the SVB-01 MECHATROLINK Inter-face Module. LED Indicator 1The

Page 156

6 SVB Module Specifications and Handling6.1.2 Handling6-4Normal operationOne of servo numbers 1 to 16 will be displayed. The Servo Modules is operat

Page 157

1 Overview of Motion Modules1.3.1 General Specifications1-101.3 SpecificationsThis section gives an overview of the specifications and functions of

Page 158 -  External I/O Cables

6.1 SVB-01 Module6-56 LED Indicator 2The TRX indicator displays the communications status of the SVB-01 Module. MECHATROLINK Connector (CN1) Conne

Page 159

6 SVB Module Specifications and Handling6.1.2 Handling6-6 CN1 ConnectionThe right and left CN1 connector ports are identical. The cable end can be

Page 160

6.1 SVB-01 Module6-76Note: 1. The JEPMC-6010- has one USB connector. For 1: N cable connections, the user is required to prepare cables with MR con

Page 161

6 SVB Module Specifications and Handling6.1.2 Handling6-8MECHATROLINK CablesUSB TerminatorFig. 6.1 USB Terminator Connection DiagramModel: JEPMC-W6

Page 162

6.1 SVB-01 Module6-96 SVB-01 System ConfigurationThe connector on the SVB-01 Module has two ports, but it provides a MECHATROLINK port for only one

Page 163

6 SVB Module Specifications and Handling6.1.2 Handling6-10 SVB-01 Module ConnectionsConnection of IO350 Unit• Use a standard cable (JEPMC-W6000-A3

Page 164

6.1 SVB-01 Module6-116Connection of Multiple MECHATROLINK SERVOPACKs1. SGD-N SERVOPACKsTo connect MECHATROLINK SERVOPACKs to an SVB-01 Module, the

Page 165

6 SVB Module Specifications and Handling6.1.2 Handling6-122. SGDH-E + JUSP-NS100 SERVOPACKsNote: Use the above system under the condition L1 + L2

Page 166 - 5.2 SVA-02A Module

6.1 SVB-01 Module6-136 Connection of SERVOPACK and ServomotorUse dedicated cables and encoder cables to connect a SERVOPACK to a Servomotor.Connecti

Page 167 - 5.2.2 Handling

6 SVB Module Specifications and Handling6.1.2 Handling6-14Connection with SGDB-N SERVOPACK3CN4CN6CNOPERATORSERVOPACKSGDB-15ADPOWERALARM5CN1SW1CN2

Page 168

1.3 Specifications1-1111.3.2 Function ListsTable 1.2 lists the motion control function specifications for the MP920.Table 1.2 MP920 Motion Control F

Page 169 - 5.2 SVA-02A Module

6.1 SVB-01 Module6-156Connection with SGDH-E + JUSP-NS100 SERVOPACKNS100L1L2L1CL2CUVWSW1L.RSTRUNINITTESTMULTIFLASHM.RSTON OFFON12345678PORT2PORT1C

Page 170 -  24 V Input Connector (CN3)

6 SVB Module Specifications and Handling6.2.1 Motion Fixed Parameters6-166.2 SVB-01 Parameters6.2.1 Motion Fixed ParametersMotion fixed parameters c

Page 171 - - Side (pin No.1)

6.2 SVB-01 Parameters6-17617 Motion Controller Function Selection Flags (SVFUNCSEL)Set whether a function is enabled or disabled when a motion comman

Page 172 - CN1/CN2 36-pin Connecto

6 SVB Module Specifications and Handling6.2.1 Motion Fixed Parameters6-1817 Bit 9 Override Selection (USE-OV)Set whether or not to use the override

Page 173

6.2 SVB-01 Parameters6-19621 Servomotor Gear Ratio (GEAR_MOTOR)These parameters determine the gear ratio between the motor and the load.The following

Page 174

6 SVB Module Specifications and Handling6.2.1 Motion Fixed Parameters6-2027 Positive Software Limit (SLIMP)Set the positions at which the software l

Page 175

6.2 SVB-01 Parameters6-216The following sections describe the zero point return methods. 0: DEC 1 + Phase-C PulseThis method has three speed levels.

Page 176 - 5.2.2 Handling

6 SVB Module Specifications and Handling6.2.1 Motion Fixed Parameters6-22 2: DEC 1 + Zero SignalIn place of the Phase-C pulse of the DEC 1 + Phase-

Page 177

6.2 SVB-01 Parameters6-2366.2.2 Motion Setting Parameters The SVB-01 Module allows position control mode only. Therefore, do not set this parameter

Page 178

6 SVB Module Specifications and Handling6.2.2 Motion Setting Parameters6-24Table 6.3 Motion Setting Parameters (cont’d)No. Name RegisterNumberSett

Page 179

1 Overview of Motion Modules1.3.2 Function Lists1-12Note: Yes: Can be controlled, No: Cannot be controlled.Applicable SERVOPACKs and Inverters SERVO

Page 180 - MP920 CPU-01 DI-01

6.2 SVB-01 Parameters6-256 Supplemental Explanation1. Procedure for Using the Zero Point Offseta) Applications where Absolute Encoder Rotates in One

Page 181

6 SVB Module Specifications and Handling6.2.2 Motion Setting Parameters6-26• PreconditionsInitialize the absolute encoder (short R-S), restart the

Page 182

6.2 SVB-01 Parameters6-276Table 6.3 Motion Setting Parameters (cont’d)No. Name RegisterNumberSetting Range/Bit NameDescription Factory Setting8 to

Page 183

6 SVB Module Specifications and Handling6.2.2 Motion Setting Parameters6-28 Acceleration/Deceleration TypeAcceleration/deceleration is broadly clas

Page 184 - Power supply

6.2 SVB-01 Parameters6-296Table 6.3 Motion Setting Parameters (cont’d)No. Name RegisterNumberSetting Range/Bit NameDescription Factory Setting15 to

Page 185 - 5.3.1 Differences in Hardware

6 SVB Module Specifications and Handling6.2.2 Motion Setting Parameters6-3021 Filter Time Constant Setting (NNUM)OW14 • Average move filter 0 to 5

Page 186 - 02A Modules

6.2 SVB-01 Parameters6-31633 Motion Com-mand Code (MCMDCODE)OW20 0 to 65535 Set the motion command code to the SVB Modules. This parameter can be u

Page 187

6 SVB Module Specifications and Handling6.2.2 Motion Setting Parameters6-3234 Motion Com-mand Control Flags(MCMDCTRL)OW21 Set motion command auxil

Page 188

6.2 SVB-01 Parameters6-33635 Rapid Traverse Speed (RV)OL220 to 231-1 Set the rapid traverse speed in 10n reference units/min (n: Number of digits b

Page 189

6 SVB Module Specifications and Handling6.2.2 Motion Setting Parameters6-3446 Position Con-trol Flags (POSCTRL)OW2D Set the functions related to p

Page 190 -  SVA-01A Module

2-122Motion ControlThis chapter gives an overview of motion control and describes the motion commands.2.1 Overview of Motion Control - - - - - - - -

Page 191

6.2 SVB-01 Parameters6-35646 Position Control Flags (POSCTRL) (cont’d)Bits 12 to 15Servodriver User Monitoring Information Selection (USRMONSEL)These

Page 192 - OB01F must be set

6 SVB Module Specifications and Handling6.2.2 Motion Setting Parameters6-3654 Servo Driver Cn Constant No. (Cn_No.), Current Servo Driver Alarm Moni

Page 193

6.2 SVB-01 Parameters6-37659 Upper-place Two Words of Encoder Position at Shutdown or Position Buffer Write DataOL3A-231 to 231-1This parameter is

Page 194 - 5.4.1 Motion Fixed Parameters

6 SVB Module Specifications and Handling6.2.3 Motion Monitoring Parameters6-386.2.3 Motion Monitoring ParametersTable 6.4 Motion Monitoring Paramet

Page 195

6.2 SVB-01 Parameters6-3963Calculated Position in Machine Coordinate System (CPOS)IL02-231 to 231-1Indicates the calculated position in a machine c

Page 196

6 SVB Module Specifications and Handling6.2.3 Motion Monitoring Parameters6-4022 Motion Command Status (MCMDSTS)(cont’d)Bit 4 External Posi-tioning

Page 197

6.2 SVB-01 Parameters6-41624 Position Control Status (POSSTS)(cont’d)Bits 12 to 15Servo Driver User Monitor Information Selection Response (USR-MONSE

Page 198

6 SVB Module Specifications and Handling6.2.3 Motion Monitoring Parameters6-4235 Alarm (ALARM) (cont’d)Bit 4 Negative Software Limit (SOTR)Va l i d

Page 199

6.2 SVB-01 Parameters6-43635 Alarm (ALARM) (cont’d)Bit 17 ABS Encoder Count Exceeded (ABSOVER)Turns ON when the absolute encoder count exceeds the ma

Page 200

6 SVB Module Specifications and Handling6.2.3 Motion Monitoring Parameters6-4447 Calculated Reference Co-ordinate Sys-tem Position (POS)IL2E-231 t

Page 201 -  2: DEC 1 + Zero Signal

2 Motion Control2.1.1 Motion Control for the MP9202-22.1 Overview of Motion ControlThis section describes the methods used for motion control and gi

Page 202 -  6: DEC 2 + Phase-C Pulse

6.2 SVB-01 Parameters6-4566.2.4 Σ Series SERVOPACK parameters List of ParametersNo. Name Size Units Range Factory SettingCn-0001 Memory switch 12bit

Page 203

6 SVB Module Specifications and Handling6.2.4 Σ Series SERVOPACK parameters6-461. The maximum values shown in the tables differ according to the SE

Page 204 -  Supplemental Explanation 1

6.2 SVB-01 Parameters6-476 Memory SwitchesThe following describes individual memory switch bits (bit parameters) from the list of SERVOPACK paramete

Page 205

6 SVB Module Specifications and Handling6.2.4 Σ Series SERVOPACK parameters6-48Cn-002: Memory Switch 2Cn-002: The following table describes the bits

Page 206

6.2 SVB-01 Parameters6-496Cn-0013: Memory Switch 3Cn-0013: The following table describes the bits in memory switch 3.* For details, refer to 7.3.3 C

Page 207 -  Supplemental Explanation 2

6 SVB Module Specifications and Handling6.2.4 Σ Series SERVOPACK parameters6-50Cn-0014: Memory Switch 4Cn-0014: The following table describes the bi

Page 208 - Position reference data 100

6.2 SVB-01 Parameters6-516The motor to be used can be changed using the Cn-0037 parameter if it belongs to the same group.Table 6.5 Cn-0037: Motor S

Page 209 - Negative speed limite

6 SVB Module Specifications and Handling6.2.5 Σ-II Series SERVOPACK Parameters6-526.2.5 Σ-II Series SERVOPACK Parameters List of ParametersThe foll

Page 210 -  Supplemental Explanation 3

6.2 SVB-01 Parameters6-536Gain-related Parameters (cont’d)Pn119 Reserved21/s 1 to 200050Pn11A 0.1% 1 to 20001000Pn11B2Hz 1 to 15050Pn11C2Hz 1 to 1507

Page 211

6 SVB Module Specifications and Handling6.2.5 Σ-II Series SERVOPACK Parameters6-54Torque-related Parameters(cont’d)Pn406 Emergency Stop Torque2% 0 t

Page 212

2.1 Overview of Motion Control2-32Name FeaturesSVA-01A • Analog-output 4-axis Servo Module• Independent position control, speed control, and phase co

Page 213

6.2 SVB-01 Parameters6-556* 1. Do not change the multiturn limit except when using an absolute encoder for infinite length axis and for special appl

Page 214

6 SVB Module Specifications and Handling6.2.5 Σ-II Series SERVOPACK Parameters6-56 Definition of Display for Function Selection ParametersEach digi

Page 215

6.2 SVB-01 Parameters6-576 List of SwitchesThe following table shows the switches.Parameter No.Digit Place Name Setting Description Factory SettingP

Page 216

6 SVB Module Specifications and Handling6.2.5 Σ-II Series SERVOPACK Parameters6-58Pn003Function Selection Application Switches 31st and 2nd Analog M

Page 217

6.2 SVB-01 Parameters6-596Pn110Autotuning1st Online Autotuning Method Switches0Tunes only at the beginning of operationOnly at the beginning of opera

Page 218

6 SVB Module Specifications and Handling6.2.5 Σ-II Series SERVOPACK Parameters6-60 Input Signal SelectionsThe following table shows the input signa

Page 219 - Latch signal

6.2 SVB-01 Parameters6-616 Output Signal SelectionsThe following table shows the output signal selections.Parameter No.Digit Place Name Setting Desc

Page 220

6 SVB Module Specifications and Handling6.2.5 Σ-II Series SERVOPACK Parameters6-62* /WARN signal types: Overload, Regenerative overload, Communicat

Page 221

6.2 SVB-01 Parameters6-636 Setting Parameters for MECHATROLINK CommunicationsThe following table shows the setting parameters for MECHATROLINK commu

Page 222

6 SVB Module Specifications and Handling6.2.6 Relationship of SERVOPACK Parameters to SVB-01 Parameters6-646.2.6 Relationship of SERVOPACK Parameter

Page 223

iiiUsing this ManualPlease read this manual to ensure correct usage of the MP920 system. Keep this manual in a safe place for future reference.  Over

Page 224

2 Motion Control2.1.2 Motion Control Methods2-42.1.2 Motion Control MethodsBy using Motion Modules, motions for a wide variety of applications can b

Page 225

6.2 SVB-01 Parameters6-656 Parameters Motion Programs Can WriteThe following SERVOPACK parameters can be written from a motion program. (SERVO-PACK

Page 226

6 SVB Module Specifications and Handling6.2.6 Relationship of SERVOPACK Parameters to SVB-01 Parameters6-66 Parameters that Must Be the Same for SV

Page 227

6.2 SVB-01 Parameters6-676 Parameters That Look Similar but Are DifferentThe SVB-01 parameter is used for zero point position output.SVB-01 SERVOPAC

Page 228 -  Supplemental Explanation 4

7-177PO-01 Module Specification andHandlingThis chapter describes the specifications and handling of the PO-01 Module and explains the PO-01 parameter

Page 229

7 PO-01 Module Specification and Handling7.1.1 Hardware Specifications7-27.1 PO-01 ModuleThis section describes the hardware specifications and hand

Page 230

7.1 PO-01 Module7-377.1.2 HandlingThe following illustration shows the appearance of the PO-01 Module. LED IndicatorThe STATUS indicator is a 7-segm

Page 231

7 PO-01 Module Specification and Handling7.1.2 Handling7-4Normal operationOne of servo numbers 1 to 16 will be displayed. The PO-01 Module is operat

Page 232

7.1 PO-01 Module7-57 Pulse Output Connector 1 Pulse Output Connector 2Axis 1Abnormal • Motion setting parameter setting error (refer to IB00, bit

Page 233

7 PO-01 Module Specification and Handling7.1.2 Handling7-6 Pulse Interface Connector SpecificationsThe following table shows the specifications of

Page 234

7.1 PO-01 Module7-77 Connector Pin Layout (CN1)The pin layout of the CN1 connector is shown below.50492524262712CN1 50-pin ConnectorPin Layout on Wi

Page 235

2.1 Overview of Motion Control2-522.1.3 Examples of Motion Control ApplicationsThe following illustrations show examples of the use of each control m

Page 236 - SVB Module Specifications and

7 PO-01 Module Specification and Handling7.1.2 Handling7-8The following table shows the names and functions of the CN1 connector pins.Pin Signal Nam

Page 237 - 6.1 SVB-01 Module

7.1 PO-01 Module7-97 Connector Pin Layout (CN2)The pin layout of the CN2 connector is shown below.50492524262712CN2 50-pin ConnectorPin Layout on Wi

Page 238 - 6.1.2 Handling

7 PO-01 Module Specification and Handling7.1.2 Handling7-10The following table shows the names and functions of the CN2 connector pins.Pin Signal Na

Page 239 - 6.1.2 Handling

7.1 PO-01 Module7-117 External I/O CablesModelsJEPMC-W6060-05: 0.5 mJEPMC-W6060-10: 1.0 mJEPMC-W6060-30: 3.0 mAppearanceCable Connection DiagramL 15

Page 240 -  LED Indicator 2

7 PO-01 Module Specification and Handling7.1.2 Handling7-12 DO Output Circuit DI Input Circuit (DI-0)The DI-0 input circuit is isolated from the D

Page 241 -  CN1 Connection

7.1 PO-01 Module7-137 DI Circuit Connection Method (DI1 to DI4)The positive terminals (DI-COM) of the DI-1 to DI-4 circuits are connected to the 24-

Page 242 - 6.1 SVB-01 Module

7 PO-01 Module Specification and Handling7.1.2 Handling7-14 PO-01 Module Connection ExampleNote: The pulse input and the digital input/output have

Page 243 - USB Terminator

7.1 PO-01 Module7-157 DI-0 Connection ExamplesAs well as the 24 V power supply in the diagram above, the DI-0 can also be used when using a 5 V diff

Page 244 -  SVB-01 System Configuration

7 PO-01 Module Specification and Handling7.2.1 Motion Control Functions7-167.2 FunctionsThis section describes PO-01 Module functions.7.2.1 Motion C

Page 245 - Connection of IO350 Unit

7.2 Functions7-177 Reference Pulse FormsReference pulses are either sign + pulse train (sign) or CW/CCW. Either form outputs a 5-V differential.Sign

Page 246 - 1. SGD-N SERVOPACKs

2 Motion Control2.1.3 Examples of Motion Control Applications2-6 Phase ControlConveyor Synchronization Position ControlConveyorCoaterServomotorMP9

Page 247

7 PO-01 Module Specification and Handling7.2.1 Motion Control Functions7-18 Maximum Pulse Output FrequencyThe reference pulse output from the PO-01

Page 248

7.2 Functions7-1977.2.2 Motion Functions Motion CommandsThe motion control functions for the PO-01 Module include positioning (POSING), zero point r

Page 249

7 PO-01 Module Specification and Handling7.2.2 Motion Functions7-20 Acceleration/Deceleration TypeAcceleration/deceleration is broadly classified a

Page 250

7.2 Functions7-217ExponentialAcceleration/Deceleration• OW0CMotion setting parameter: Linear Acceleration Time Constant• OW0DMotion setting param

Page 251 - 6.2 SVB-01 Parameters

7 PO-01 Module Specification and Handling7.2.3 Program Example7-227.2.3 Program ExampleThis section shows an example of a simple user program. The p

Page 252 - 6.2 SVB-01 Parameters

7.2 Functions7-237 Programming ExampleThe user program shown in DWG.A was created to set the initial values shown in the figure below. The initial v

Page 253 - One rotation = 360°

7 PO-01 Module Specification and Handling7.2.3 Program Example7-24The following is an extremely simplified programming example. In actual applicatio

Page 254

7.2 Functions7-2577.2.4 Out-of-step Detection Module Configuration ExampleUse the MP920 Counter Module (CNTR-01) to detect out-of-step operation wit

Page 255

7 PO-01 Module Specification and Handling7.2.4 Out-of-step Detection7-26 Application Program ExampleThe monitor parameter from the PO-01 Module (nu

Page 256

7.2 Functions7-277The following figure shows an example of an application program for out-of-step detection.Fig. 7.5 Example of an Application Progr

Page 257

2.2 Control Modes2-722.2 Control ModesThis section describes the motion control modes that can be used by the MP920.2.2.1 Overview of Control ModesFi

Page 258

7 PO-01 Module Specification and Handling7.2.4 Out-of-step Detection7-28The example application program shown on the previous page is briefly explai

Page 259

7.2 Functions7-2977.2.5 Emergency StopThe PO-01 Module has a separate emergency stop input signal (DI04) for every axis. Emergency Stop ProcedureThe

Page 260 -  Supplemental Explanation

7 PO-01 Module Specification and Handling7.2.5 Emergency Stop7-305. Turn ON and then OFF the alarm clear (OW00 bit 6).Note: If an emergency stop s

Page 261

7.3 PO-01 Parameters7-3177.3 PO-01 Parameters7.3.1 Motion Fixed ParametersMotion fixed parameters cannot be changed when bit 0 of motion setting para

Page 262

7 PO-01 Module Specification and Handling7.3.1 Motion Fixed Parameters7-3214 Additional Function Selections(AFUNCSEL)Set additional functions, such

Page 263

7.3 PO-01 Parameters7-33717 Motion Controller Function Selection Flags(SVFUNCSEL)Set whether a function is enabled or disabled when a motion command

Page 264 - Position Control

7 PO-01 Module Specification and Handling7.3.1 Motion Fixed Parameters7-3417 Bit 9 Override Selection (USE-OV)Set whether or not to use the override

Page 265

7.3 PO-01 Parameters7-35721 Servomotor Gear Ratio (GEAR_MOTOR)These parameters determine the gear ratio between the motor and the load.The following

Page 266

7 PO-01 Module Specification and Handling7.3.1 Motion Fixed Parameters7-3631 Zero Point Return Method (ZRETSEL)Set the zero point return method when

Page 267

7.3 PO-01 Parameters7-377The following sections describe the zero point return methods. 2: DEC 1 + Zero Point SignalThis method has three speed leve

Page 268 - × Override = Output speed

2 Motion Control2.2.2 Speed Reference Output Mode2-82.2.2 Speed Reference Output Mode OverviewThis mode is used to rotate the motor at the desired

Page 269

7 PO-01 Module Specification and Handling7.3.1 Motion Fixed Parameters7-38 5: DEC 1 + LMT + Zero Point SignalThis method gets the current position

Page 270

7.3 PO-01 Parameters7-3977.3.2 Motion Setting Parameters• Zero Point Position Offset in the Machine Coordinate System (ABSOFF)This register contains

Page 271

7 PO-01 Module Specification and Handling7.3.2 Motion Setting Parameters7-402 RUNCommandSettings (SVRUNCMD)OW01 Set the output signal from the PO-

Page 272

7.3 PO-01 Parameters7-4172 RUNCommandSettings (SVRUNCMD) (cont’d)Bit 13 Speed Refer-ence Value Selection (SPDTYPE)Set speed reference method for feed

Page 273

7 PO-01 Module Specification and Handling7.3.2 Motion Setting Parameters7-4211 Approach Speed Setting (Napr)OW0A 0 to 32767 Set the approach and c

Page 274

7.3 PO-01 Parameters7-43719 Position Refer-ence Setting (XREF) or Position Buffer NumberOL12-231 to 231-1Set the position reference. The meaning of

Page 275

7 PO-01 Module Specification and Handling7.3.2 Motion Setting Parameters7-4433 Motion Command Code (MCMD-CODE)OW20 0 to 65535 Set the motion comma

Page 276

7.3 PO-01 Parameters7-45734 Motion Com-mand Control Flags (MCMDCTRL) (cont’d)Bits 4 to 7 Filter Type Selection (FILTER-TYPE)Set the type of accelerat

Page 277

7 PO-01 Module Specification and Handling7.3.2 Motion Setting Parameters7-4641 Step Travel Distance (STEP)OL280 to 231-1Set the travel distance in

Page 278

7.3 PO-01 Parameters7-47746 Position Con-trol Flags (POSCTRL)OW2D Set the functions related to position data managed by PO-01 Modules. The bit conf

Page 279

2.2 Control Modes2-921. Set the motion fixed parameters according to the user’s machine.* 1. Valid only with an SVB-01 Module.* 2. Valid only with

Page 280 -  List of Parameters

7 PO-01 Module Specification and Handling7.3.2 Motion Setting Parameters7-4857 Position Buffer Access NumberOL38 1 to 256 Position Buffer Access N

Page 281

7.3 PO-01 Parameters7-4977.3.3 Motion Monitoring ParametersTable 7.11 Motion Monitoring Parameters No. Name Register No. Setting Range/Bit NameDescr

Page 282 - Cn-001: Memory Switch 1

7 PO-01 Module Specification and Handling7.3.3 Motion Monitoring Parameters7-502 General-pur-pose DI Monitor (SVSTS)IW01 Monitors the status of in

Page 283 - Cn-002: Memory Switch 2

7.3 PO-01 Parameters7-51716 Out of Range Parameter Num-ber (ERNO)IW0F 1. Motion setting parameter1 to 652. Motion fixed parameter101 to 148Indicate

Page 284 - Cn-0013: Memory Switch 3

7 PO-01 Module Specification and Handling7.3.3 Motion Monitoring Parameters7-5224 Position Control Status(POSSTS)IW17 This parameter indicates sta

Page 285 - Cn-0014: Memory Switch 4

7.3 PO-01 Parameters7-53735 Alarms (ALARM)IL22 Alarm data and a halt to operation are indicated if this register shows anything other than “0.” The

Page 286

7 PO-01 Module Specification and Handling7.3.3 Motion Monitoring Parameters7-5441 Position Buffer Read Data(CNMON)IL28-231 to 231-1Position data f

Page 287

8-188TroubleshootingThis chapter describes the troubleshooting procedure when a Motion Module alarm occurs.8.1 Overview of Alarms - - - - - - - - -

Page 288

8 Troubleshooting8.1.1 Description of Motion Alarms8-28.1 Overview of AlarmsThis section describes alarms that occur while using a Motion Module.8.1

Page 289

8.1 Overview of Alarms8-38SVA-01A/02A and PO-01Run Status (RUNSTS) IW00Bit1: PRMERR Motion setting parameter setting errorBit2: FPRMERR

Page 290

2 Motion Control2.2.2 Speed Reference Output Mode2-104. To start operation, set the Servo ON (RUN) to ON (bit 0 of OW01).The speed reference will

Page 291 - Hexadecimal display

8 Troubleshooting8.1.1 Description of Motion Alarms8-4SVB-01Servo Drive alarm code(SVALARM) IW24Run Status (RUNSTS) IW00Bit1: PRMERR

Page 292 -  List of Switches

8.1 Overview of Alarms8-588.1.2 Processing Flow for Motion Alarms Troubleshooting FlowThe following illustration shows the troubleshooting flow when

Page 293

8 Troubleshooting8.2.1 Alarm IL228-68.2 Alarms and Actions TakenThis section describes individual alarms and the actions that should be taken.8.2.

Page 294

8.2 Alarms and Actions Taken8-78 SERVOPACK Error1. This status bit will turn ON if an alarm classified as a servo alarm in the MECHATROLINK servo a

Page 295 -  Input Signal Selections

8 Troubleshooting8.2.1 Alarm IL228-8 MECHATROLINK Servo Alarm Code (IW24)When IL22 bit 0 (SERVOPACK Error) is ON, a Servo Driver alarm will b

Page 296 -  Output Signal Selections

8.2 Alarms and Actions Taken8-98 Analog Servo AlarmsIB010 (SVALM) will turn ON if an alarm occurs with a SERVOPACK connected to an SVA-01A or SVA-

Page 297

8 Troubleshooting8.2.1 Alarm IL228-10Note: Yes: Supported, No: Not supportedA.A1 Heat Sink Overheat SERVOPACK heat sink overheated.No Yes NoA.b1 S

Page 298

8.2 Alarms and Actions Taken8-118 Positive Overtravel and Negative OvertravelWe recommend the following settings in the SERVOPACK to prevent vertica

Page 299 - Series SERVOPACK

8 Troubleshooting8.2.1 Alarm IL228-12 Positive Software Limit and Negative Software Limit Servo OFF (Excitation ON)SVA-01A SVA-02A SVB-01 PO-01S

Page 300

8.2 Alarms and Actions Taken8-138 Positioning Time OverThis check will not be performed if OW34 (Positioning Complete Check Time) is set to 0. Po

Page 301

2.2 Control Modes2-112Ladder Logic Program ExampleFig. 2.2 RUN Commands (DWG H01)The example in the above illustration has been greatly simplified.

Page 302 - SVB-01 SERVOPACK

8 Troubleshooting8.2.1 Alarm IL228-14 Filter Type Change ErrorThe command that is being executed will not stop even if an error occurs. A stop pr

Page 303

8.2 Alarms and Actions Taken8-158 Control Mode Error Zero Point Not SetSVA-01A SVA-02A SVB-01 PO-01Supported Supported Supported SupportedDetection

Page 304 - 7.1 PO-01 Module

8 Troubleshooting8.2.1 Alarm IL228-16 Servo Drive Synchronous Communications Error Servo Drive Communications ErrorSVA-01A SVA-02A SVB-01 PO-01N

Page 305 - 7.1.2 Handling

8.2 Alarms and Actions Taken8-178 Servo Drive Command Timeout ErrorThis occurs when MECHATROLINK SERVOPACK Modules are allocated with SERVOPACK powe

Page 306 - 7.1.2 Handling

8 Troubleshooting8.2.1 Alarm IL228-18 Broken PG WiringSVA-01A SVA-02A SVB-01 PO-01Supported Supported Not supported Not supportedDetection Timing

Page 307 -  Pulse Output Connector 2

8.2 Alarms and Actions Taken8-198 Status Monitor (IW01)The status of a MECHATROLINK SERVOPACK can be monitored through monitoring parameter IW01

Page 308

8 Troubleshooting8.2.2 Motion Alarm Configuration8-208.2.2 Motion Alarm ConfigurationThe following illustration shows the motion alarm configuration

Page 309 -  Connector Pin Layout (CN1)

8.2 Alarms and Actions Taken8-218* Axis numbers are stored in bits 8 to 11 when an axis alarm occurs.Axis Alarm* 80h Logic-control axis use prohibit

Page 310

8 Troubleshooting8.2.3 Motion Module Error Displays and Actions Taken8-228.2.3 Motion Module Error Displays and Actions Taken Servo Number LED Disp

Page 311 -  Connector Pin Layout (CN2)

8.2 Alarms and Actions Taken8-238Servo number: No. 10A servo number (1 to 16) is displayed when the servo is operating normally without an error or a

Page 312

2 Motion Control2.2.3 Torque Reference Output Mode2-122.2.3 Torque Reference Output Mode OverviewThis mode is used to generate a constant torque, r

Page 313

8 Troubleshooting8.2.3 Motion Module Error Displays and Actions Taken8-24 LED Indicator Alarm DisplaysWhen an error or alarm occurs, refer to the f

Page 314 -  DI Input Circuit (DI-0)

9-199Application PrecautionsThis chapter summarizes precautions that should be observed when using MP920 Motion Modules.9.1 Vertical Axis Control -

Page 315

9 Application Precautions9.1.1 Overview9-29.1 Vertical Axis ControlThis section describes the procedure for connecting and setting parameters when a

Page 316 - DI_0- (5/12V)

9.1 Vertical Axis Control9-399.1.2 SGDA SERVOPACK Connections Connection Example* 1. Brake control relay* 2. Brake power supplies are available in

Page 317 - At 12 V open collector

9 Application Precautions9.1.2 SGDA SERVOPACK Connections9-4This setting determines the timing for stopping the Servomotor. Set Cn-15 and Cn-16 for

Page 318 - 7.2 Functions

9.1 Vertical Axis Control9-599.1.3 SGDB SERVOPACK Connections Connection Example* 1. Brake control relay* 2. Brake power supplies are available in

Page 319 - Sign Reference Pulses

9 Application Precautions9.1.3 SGDB SERVOPACK Connections9-6Cn-12 (Time Lag from Brake Reference to Servo OFF)Use the following parameter if brake O

Page 320

9.1 Vertical Axis Control9-79When using a Servomotor with brake, be sure to set the brake timing when the /S-ON signal (1CN-40) is input while the Se

Page 321 - 7.2.2 Motion Functions

9 Application Precautions9.1.4 SGDM/SGDS SERVOPACK Connections9-89.1.4 SGDM/SGDS SERVOPACK Connections Connection Example* 1. Parameter PN50F. 2 i

Page 322 - 7.2.2 Motion Functions

9.1 Vertical Axis Control9-99Pn506 (Time Lag from Brake Reference to Servo OFF)Use the following parameter if brake ON timing causes the machine to m

Page 323 - 7.2 Functions

2.2 Control Modes2-1321. Set the motion fixed parameters according to the user’s machine.Table 2.3 shows the related parameters when the torque refer

Page 324 - 7.2.3 Program Example

9 Application Precautions9.2.1 Overview9-109.2 Overtravel FunctionThis section describes the procedure for using the overtravel function.9.2.1 Overv

Page 325 -  Programming Example

9.2 Overtravel Function9-119P-OT When ON1CN-16 and 1CN-42 at low levelForward drive enabled, normal operationWhen OFF1CN-16 and 1CN-42 at high levelF

Page 326 - 7.2.3 Program Example

9 Application Precautions9.2.3 Parameter Settings9-129.2.3 Parameter Settings Overtravel Input Signal ON/OFF SettingsSet the following parameters t

Page 327 - 7.2.4 Out-of-step Detection

9.2 Overtravel Function9-139 Servomotor Stop Procedure Selection with OvertravelSet the following parameters according to the Servomotor stop proced

Page 328 -  Application Program Example

9 Application Precautions9.2.3 Parameter Settings9-14SGDM and SGDSSelect the stopping procedure as well as the processing to be performed after stop

Page 329

9.2 Overtravel Function9-159Parameter No. Description Setting Meaning Factory SettingPn001.0 Servomotor stopping procedure for servo OFF0Stops by dyn

Page 330 - Feedback Position Calculation

9 Application Precautions9.3.1 Overview9-169.3 Software Limit FunctionThis section describes the software limit function.9.3.1 OverviewThe software

Page 331 - 7.2.5 Emergency Stop

9.3 Software Limit Function9-179The following table shows the effect of software limits in each operating mode.The software limit function will be en

Page 332

9 Application Precautions9.4.1 Overview9-189.4 Reverse Rotation ModeThis section describes the procedure used to set parameters when using the Rever

Page 333 - 7.3 PO-01 Parameters

9.4 Reverse Rotation Mode9-199SERVOPACK Reverse Rotation Mode Parameter SettingsFixed Parameters for the SVA ModuleParameter Description Setting Mean

Page 334

iv Visual AidsThe following aids are used to indicate types of information for easier reference. Indication of Reverse Signals In this manual, t

Page 335 - 7.3 PO-01 Parameters

2 Motion Control2.2.3 Torque Reference Output Mode2-14 User Program ExampleExample of RUN OperationFig. 2.3 Torque PatternLadder Logic Program Exa

Page 336

9 Application Precautions9.4.2 Absolute Encoder Setting9-209.4.2 Absolute Encoder SettingSet the following parameters when using an absolute encoder

Page 337 - (upper limit)

9.4 Reverse Rotation Mode9-2199.4.3 Incremental Encoder SettingSet the following Rotation Direction Selection SERVOPACK Parameter when using an incre

Page 338

10-11010CNTR-01 Module Specifications andHandlingThis chapter describes the specifications and handling of the CNTR-01 Counter Module.10.1 CNTR-01 Mo

Page 339

10 CNTR-01 Module Specifications and Handling10.1.1 Hardware Specifications10-210.1 CNTR-01 ModuleThis section describes the hardware specifications

Page 340

10.1 CNTR-01 Module10-31010.1.2 HandlingThe following illustration shows the appearance of the CNTR-01 Module. LED IndicatorsThese LED indicators di

Page 341

10 CNTR-01 Module Specifications and Handling10.1.2 Handling10-4The following table shows the LED indicators when an error occurs in a CNTR-01 Modul

Page 342

10.1 CNTR-01 Module10-510 Pulse Input Connector 212-V Voltage Pulse Input + Latch Input + Coincidence Detection Out-put ConnectorThe CNTR-01 Module

Page 343 - (ABSOFF)

10 CNTR-01 Module Specifications and Handling10.1.2 Handling10-6 External I/O CablesModelsJEPMC-W6060-05: 0.5 mJEPMC-W6060-10: 1.0 mJEPMC-W6060-30:

Page 344

10.1 CNTR-01 Module10-71050 25492448GND23GND47 -5PC4 22+5PC446 -5PB4 21+5PB445 -5PA4 20+5PA44419431842GND−−−−−−−−−−−−−−−−−−17GND41 -5PC3 16+5PC340 -5

Page 345

10 CNTR-01 Module Specifications and Handling10.1.2 Handling10-8The following table shows the names and functions of the CN1 connector pins.Pin Sign

Page 346

2.2 Control Modes2-1522.2.4 Phase Control Mode OverviewThis mode is used to rotate the motor according to the specified speed reference, and at the

Page 347

10.1 CNTR-01 Module10-910 Connector Pin Layout (CN2)The pin layout of the CN2 connector is shown below.50492524262712Pin Layout on Wiring Side50 254

Page 348

10 CNTR-01 Module Specifications and Handling10.1.2 Handling10-10The following table shows the names and functions of the CN2 connector pins.Pin Sig

Page 349

10.2 Using the CNTR-01 Module10-111010.2 Using the CNTR-01 ModuleThis section explains how to use the CNTR-01 Module.10.2.1 Overview Module Overview

Page 350

10 CNTR-01 Module Specifications and Handling10.2.1 Overview10-12 Module ConfigurationThe Counter Module executes the functions specified in fixed

Page 351

10.2 Using the CNTR-01 Module10-131010.2.2 Fixed ParametersSet the Counter Module operating conditions for each channel.1. Set fixed parameters usin

Page 352

10 CNTR-01 Module Specifications and Handling10.2.2 Fixed Parameters10-14The following table shows the details of each fixed parameter.No. Name Desc

Page 353

10.2 Using the CNTR-01 Module10-151010.2.3 Setting I/O DataI/O data includes data reported by the Counter Module, operating status data, and settings

Page 354

10 CNTR-01 Module Specifications and Handling10.2.3 Setting I/O Data10-16 Out Data (Output Data)Output data is used as references for the Counter M

Page 355

10.2 Using the CNTR-01 Module10-1710 Operating ModeNote: √: Supported, −: Not supportedBit No. Name Reversible CounterInterval CounterFrequency Meas

Page 356

10 CNTR-01 Module Specifications and Handling10.2.3 Setting I/O Data10-18 Pulse Count MethodsThe following pulse count methods can be selected usin

Page 357 - Troubleshooting

2 Motion Control2.2.4 Phase Control Mode2-16 DetailsUse the following procedure to perform phase control operation.PCONRUN01. Set the motion fixed

Page 358 - 8.1 Overview of Alarms

10.2 Using the CNTR-01 Module10-1910* 2. MultiplicationNegative Logic 12-V Pull-up Collector Input:Increments the count if pulse A is input when pul

Page 359 - SVA-01A/02A and PO-01

10 CNTR-01 Module Specifications and Handling10.2.3 Setting I/O Data10-20Table 10.3 External Input Pulse Timing Pulse Count Method Polarity Increme

Page 360

10.2 Using the CNTR-01 Module10-2110A/B Mode× 1Positive LogicNegative Logic× 2Positive LogicNegative Logic× 4Positive LogicNegative LogicUp-down Mode

Page 361 -  Troubleshooting Flow

10 CNTR-01 Module Specifications and Handling10.3.1 Reversible Counter Mode10-2210.3 Counter ModesThis section explains the counter modes for the CN

Page 362 - 8.2 Alarms and Actions Taken

10.3 Counter Modes10-2310 Reversible Counter SettingsUse the following settings when using the Counter Module as a reversible counter.Fixed Paramete

Page 363 -  SERVOPACK Error

10 CNTR-01 Module Specifications and Handling10.3.2 Interval Counter Mode10-2410.3.2 Interval Counter ModeThe Interval Counter Mode increments and d

Page 364 - 8.2.1 Alarm IL22

10.3 Counter Modes10-2510 Interval Counter SettingsUse the following settings when using the Counter Module as an interval counter.Fixed Parameter S

Page 365 -  Analog Servo Alarms

10 CNTR-01 Module Specifications and Handling10.3.3 Frequency Measurement10-2610.3.3 Frequency MeasurementFrequency is measured according to pulse A

Page 366

10.3 Counter Modes10-2710 Setting Frequency Measurement FunctionsUse the following settings when using the Counter Module for frequency measurement.

Page 367

10 CNTR-01 Module Specifications and Handling10.3.3 Frequency Measurement10-28 Coincidence Output and Interrupt FunctionsThe Coincidence Output and

Page 368 -  Servo OFF (Excitation ON)

2.2 Control Modes2-1721. Set the motion fixed parameters according to the user’s machine.* 1. Valid only with an SVB-01 Module.* 2. Valid only with

Page 369 -  Positioning Time Over

10.3 Counter Modes10-2910 PI Latch FunctionThe PI Latch Function latches the current value at the moment an external signal is input (or at the risi

Page 370 -  Filter Type Change Error

10 CNTR-01 Module Specifications and Handling10.4.1 Pulse Input Specifications10-3010.4 CNTR-01 Module I/O CircuitsThis section explains the I/O cir

Page 371 -  Zero Point Not Set

10.4 CNTR-01 Module I/O Circuits10-3110 5-V Differential Input SpecificationsThe following table shows 5-V differential pulse input specifications.I

Page 372

10 CNTR-01 Module Specifications and Handling10.4.2 Latch Input Circuits10-3210.4.2 Latch Input CircuitsThe following table shows the specifications

Page 373 - 8.2 Alarms and Actions Taken

10.4 CNTR-01 Module I/O Circuits10-331010.4.3 Coincidence Output CircuitsThe following table shows the specifications for coincidence output circuits

Page 374 -  Broken PG Wiring

10 CNTR-01 Module Specifications and Handling10.5.1 Connections to Pulse Generators10-3410.5 CNTR-01 Counter Module ConnectionsThis section explains

Page 375 -  Status Monitor (IW01)

10.5 CNTR-01 Counter Module Connections10-3510 5-V Differential Pulse GeneratorsThe connections to a 5-V differential pulse generator are shown in t

Page 376 - Axis alarm

10 CNTR-01 Module Specifications and Handling10.5.2 Pulse C Signals10-36 Combining Pulses A, B and CThe following two settings are possible for pul

Page 377

10.5 CNTR-01 Counter Module Connections10-3710 12-V Input Collector Signals 24-V Input Signals680ΩHCPL06110.03312VC112PC1(DI_COM)1.5k1.5k1k24PC1CN2

Page 378 -  Servo Number LED Display

A-1AAppendix AModule AppearanceThis appendix shows the appearance of the Motion Modules used in the MP920 Machine Controller.A.1 Motion Modules - -

Page 379

2 Motion Control2.2.4 Phase Control Mode2-183. Select the Phase Control Mode (PHCON) (bit 3 of OW00).At this time, also set Phase Reference Disabl

Page 380

Appendix A Module Appearance A-2A.1 Motion Modules 4-axis Servo ModuleDescription: SVA-01AModel: JEPMC-MC200AM4 mounting screw105(5.5)58Modelnamepl

Page 381 - Application Precautions

A.1 Motion ModulesA-3A 2-axis Servo ModuleDescription: SVA-02AModel: JEPMC-MC220A MECHATROLINK Interface ModuleDescription: SVB-01Model: JEPMC-MC21

Page 382 - L1, L2, L3

Appendix A Module Appearance A-4 Pulse Output ModuleDescription: PO-01Model: JEPMC-PL210105(5.2)58(41.4)Modelnameplate30.74.51304.5CN1CN2CN2PO-01ST

Page 383 -  Parameter Settings

A.2 Counter ModuleA-5AA.2 Counter Module Counter ModuleDescription: CNTR-01Model: JEPMC-PL20030.74.51304.5CNTR-01CN1CN2CH4RUNERRCH1CH2CH3105(5.2)58(

Page 384 - Cn-15 and Cn-16

IndexIndex-1INDEXAabsolute data error - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8-8, 8-9absolute encoderfixed parameters for the SVA

Page 385

IndexIndex-2fixed length feed (STEP)- - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-11details - - - - - - - - - - - - - - - - - - - - - -

Page 386

IndexIndex-3motion moduleallocation method- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3-2defining the module configuration - - - -

Page 387 - 9.1 Vertical Axis Control

IndexIndex-4positioning (POSING) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2-45details - - - - - - - - - - - - - - - - - - - - - -

Page 388

IndexIndex-5SVA-01A moduleappearance - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5-3connection of SERVOPACK and servomotor

Page 389 - Pn507 and Pn508

Revision HistoryThe revision dates and numbers of the revised manuals are given on the bottom of the back cover.Date ofPublicationRev. No.WEB Rev. No.

Page 390 - 9.2 Overtravel Function

2.2 Control Modes2-192Ladder Logic Program ExampleFig. 2.7 RUN Commands (DWG H04)The example in the above illustration has been greatly simplified.

Page 391 - 9.2 Overtravel Function

英文 No.9-3 (SIE)IRUMA BUSINESS CENTER (SOLUTION CENTER)480, Kamifujisawa, Iruma, Saitama 358-8555, JapanPhone 81-4-2962-5696 Fax 81-4-2962-6138 YAS

Page 392 - 9.2.3 Parameter Settings

2 Motion Control2.2.4 Phase Control Mode2-20An electronic cam control loop can be configured using phase control. With normal phase control, the pos

Page 393 - SGDA and SGDB

2.2 Control Modes2-212Ladder Logic Program ExampleFig. 2.10 RUN Command (DWG H04)The example in the above illustration has been greatly simplified.

Page 394 - SGDM and SGDS

2 Motion Control2.2.5 Zero Point Return Mode2-222.2.5 Zero Point Return Mode OverviewThe zero point return operation returns the machine to the mac

Page 395

2.2 Control Modes2-2321. Set the motion fixed parameters according to the user’s machine.* 1. Valid only with an SVB-01A Module.* 2. Valid only wit

Page 396 - 9.3 Software Limit Function

v Related ManualsRefer to the following related manuals as required.Thoroughly check the specifications, restrictions, and other conditions of the pr

Page 397 -  Alarm Data

2 Motion Control2.2.5 Zero Point Return Mode2-24* Valid only with an SVA-02A Module.In the example, the SERVOPACK is used as axis 1 of Module No. 1

Page 398 - 9.4 Reverse Rotation Mode

2.2 Control Modes2-252 User Program ExampleExample of RUN OperationFig. 2.11 Zero Point Return PatternOperating ConditionsInput a limit switch sign

Page 399 - 9.4 Reverse Rotation Mode

2 Motion Control2.3.1 Prerequisites for Position Control2-262.3 Position ControlThis section describes the prerequisites for position control, and p

Page 400

2.3 Position Control2-272When using a motion program, always set Position Reference Type (bit 14 of OW01) to 1 (incre-mental addition mode).The def

Page 401

2 Motion Control2.3.1 Prerequisites for Position Control2-28 Reference UnitThe reference units input to the Module are set with the following motio

Page 402

2.3 Position Control2-292 Electronic GearIn contrast to the reference unit input to the Module, the mechanical travel unit is called the “output uni

Page 403 - 10.1 CNTR-01 Module

2 Motion Control2.3.1 Prerequisites for Position Control2-30Table 2.12 shows the meanings of the above parameters and gives some setting examples.Ta

Page 404 - 10.1.2 Handling

2.3 Position Control2-312Electronic Gear Parameter Setting Example (A): With Ball ScrewIn the above machine system, if the requirement is reference u

Page 405 -  Pulse Input Connector 1

2 Motion Control2.3.1 Prerequisites for Position Control2-32Electronic Gear Parameter Setting Example (B): Rotating LoadIn the above machine system,

Page 406 -  Pulse Input Connector 2

2.3 Position Control2-332 Position ReferenceThere are two methods of setting the position reference: Direct designation, which directly sets the pos

Page 407

viSafety InformationThe following conventions are used to indicate precautions in this manual. Failure to heed provided in this manual can result

Page 408 - 10.1 CNTR-01 Module

2 Motion Control2.3.1 Prerequisites for Position Control2-34With the position reference for an infinite length axis, the present travel distance (in

Page 409 - 10.1.2 Handling

2.3 Position Control2-352With the SVA-02A Module (2-axis Servo Module), there are position buffers for only 2 axes.Using the Position BuffersBy first

Page 410

2 Motion Control2.3.1 Prerequisites for Position Control2-36Reading Position Buffers1. Set the Position Buffer Access Number (OL38). Any number be

Page 411

2.3 Position Control2-372In this way, the data for the position buffer number specified in OL12 functions as the position reference. Position Moni

Page 412 - 10.2 Using the CNTR-01 Module

2 Motion Control2.3.1 Prerequisites for Position Control2-38 Speed ReferenceThere are two methods of setting the speed reference. One method involv

Page 413 -  Module Configuration

2.3 Position Control2-392When Motion Commands Are Not UsedWhen motion commands are not used, the Speed Reference Selection Flags are disabled, and th

Page 414 - 10.2.2 Fixed Parameters

2 Motion Control2.3.1 Prerequisites for Position Control2-40Table 2.18 shows some examples of the parameter settings.* 1. Select Enabled (= 1) in b

Page 415 - 10.2.2 Fixed Parameters

2.3 Position Control2-412• OW2C = 10,000 (100%)2. Speed Reference Value Selection Set to “1”a) When you wish perform operations with the fixed par

Page 416 - 10.2.3 Setting I/O Data

2 Motion Control2.3.2 Position Control Without Using Motion Commands2-42 DetailsUse the following procedure to perform position control operations

Page 417 -  Status (Operating Status)

2.3 Position Control2-432* Valid only with an SVA-02A Module.3. Select the Position Control Mode (PCON) (bit 2 of OW00).4. To start operation, set

Page 418 -  Operating Mode

viiSafety PrecautionsThis section describes precautions to ensure the correct application of the product. Before installing, operating, maintaining, o

Page 419 -  Pulse Count Methods

2 Motion Control2.3.2 Position Control Without Using Motion Commands2-44 User Program ExampleExample of RUN OperationFig. 2.13 Position PatternOpe

Page 420

2.4 Position Control Using Motion Commands2-4522.4 Position Control Using Motion CommandsThis section describes position control using motion command

Page 421 - 10.2.3 Setting I/O Data

2 Motion Control2.4.1 Overview of Motion Commands2-463Zero Point Return (ZRET)Returns the system to the machine coordinate system zero point. Eight

Page 422

2.4 Position Control Using Motion Commands2-4727 Fixed Speed Feed (FEED)Performs rapid traverse in the infinite length direction at the specified spe

Page 423 - 10.3 Counter Modes

2 Motion Control2.4.2 Positioning (POSING)2-482.4.2 Positioning (POSING) OverviewPositions the axis at the position reference position using the sp

Page 424 - I/O Data Settings

2.4 Position Control Using Motion Commands2-4924. Set RUN Servo ON (RUN) to ON (bit 0 of OW01). For the PO-01 Module, set Excitation ON (RUN) to ON

Page 425 - 10.3.2 Interval Counter Mode

2 Motion Control2.4.2 Positioning (POSING)2-50• When the Position Reference Type (bit 14 of OW01) is the incremental addi-tion mode (= 1), operat

Page 426 -  Interval Counter Settings

2.4 Position Control Using Motion Commands2-512Ladder Logic Program ExampleFig. 2.16 Positioning Programming Example (DWG H03)The example in the abo

Page 427 - 10.3.3 Frequency Measurement

2 Motion Control2.4.3 External Positioning (EX_POSING)2-52 DetailsUse the following procedure to perform external positioning operations.1. Set the

Page 428

2.4 Position Control Using Motion Commands2-532The specified motion parameters are used to position the axis.Even during positioning, the motion para

Page 429

viii Wiring• Always connect a power supply that meets the given specifications.Connecting an inappropriate power supply may cause fires.• Wirin

Page 430 -  PI Latch Function

2 Motion Control2.4.3 External Positioning (EX_POSING)2-54When the axis enters the Positioning Completed Range (OW0E) after Distribution Completed

Page 431

2.4 Position Control Using Motion Commands2-552Ladder Logic Program ExampleFig. 2.18 External Positioning Programming Example (DWG H03)The example i

Page 432 - 75ALS1177

2 Motion Control2.4.4 Zero Point Return (ZRET)2-56 Zero Point Return MethodThe following methods are available with the zero point return (ZRET) mo

Page 433 - 10.4.2 Latch Input Circuits

2.4 Position Control Using Motion Commands2-572 DEC1 + Phase-C PulseThis method is used to perform zero point return using a limit switch (decelerat

Page 434

2 Motion Control2.4.4 Zero Point Return (ZRET)2-58 DEC2 + Phase-C PulseThis method is used to perform zero point return using a limit switch (decel

Page 435

2.4 Position Control Using Motion Commands2-5921. The axis travels at rapid traverse speed in the forward direction.2. The axis decelerates at the fa

Page 436

2 Motion Control2.4.4 Zero Point Return (ZRET)2-60 DEC1 + LMT + Phase-C PulseThis method is used to perform zero point return using a limit switch

Page 437 - 10.5.2 Pulse C Signals

2.4 Position Control Using Motion Commands2-612after traveling only the zero point return final travel distance (OL2A) from the ini-tial zero point

Page 438 -  24-V Input Signals

2 Motion Control2.4.4 Zero Point Return (ZRET)2-62Zero Point Return Operation Started and Interval (c) Used1. The axis travels at approach speed in

Page 439 - Appendix A

2.4 Position Control Using Motion Commands2-632 Phase-C PulseThis method is used to perform zero point return using only a zero point signal (Phase-

Page 440 - A.1 Motion Modules

ix Application Maintenance• Do not touch any Module terminals when the system power is ON.There is a risk of electrical shock.WARNING• Do not atte

Page 441 -  2-axis Servo Module

2 Motion Control2.4.4 Zero Point Return (ZRET)2-64 DEC1 + LMT + ZERO Signal MethodZero point return is performed using a ZERO signal (DI signal) in

Page 442 -  Pulse Output Module

2.4 Position Control Using Motion Commands2-652 Example of the Zero Point Return OperationsUse the following procedure to perform zero point return

Page 443 - A.2 Counter Module

2 Motion Control2.4.4 Zero Point Return (ZRET)2-666. Zero point return (ZRET) will be executed.The axis travels at rapid traverse speed in the direc

Page 444

2.4 Position Control Using Motion Commands2-672position will be the machine coordinate system zero point.A zero point position offset value can also

Page 445 - - - - - - 5-68

2 Motion Control2.4.4 Zero Point Return (ZRET)2-68 User Program Example: Zero Point ReturnExample of RUN OperationFig. 2.19 Example of a Zero Poin

Page 446

2.4 Position Control Using Motion Commands2-692Ladder Logic Program ExampleFig. 2.20 Zero Point Return Programming Example (DWG H03)* For the SVB-0

Page 447

2 Motion Control2.4.5 Interpolation (INTERPOLATE, END_OF_INTERPOLATE)2-702.4.5 Interpolation (INTERPOLATE, END_OF_INTERPOLATE) OverviewThis command

Page 448

2.4 Position Control Using Motion Commands2-7125. Set interpolation (INTERPOLATE = 4) in the motion command code (OW20).When interpolation (INTERPO

Page 449

2 Motion Control2.4.5 Interpolation (INTERPOLATE, END_OF_INTERPOLATE)2-72 User Programming Example: InterpolationLadder Logic Program ExampleFig. 2

Page 450 - MANUAL NO. SIEZ-C887-2.5C

2.4 Position Control Using Motion Commands2-7322.4.6 Interpolation with Position Detection (LATCH) OverviewIn the same way as for an interpolation f

Comments to this Manuals

No comments