Yaskawa Sigma-5 User Manual: Design and Maintenance - Rota User Manual

Browse online or download User Manual for Equipment Yaskawa Sigma-5 User Manual: Design and Maintenance - Rota. Yaskawa Sigma-5 User Manual: Design and Maintenance - Rotary Motors User Manual

  • Download
  • Add to my manuals
  • Print
  • Page
    / 329
  • Table of contents
  • TROUBLESHOOTING
  • BOOKMARKS
  • Rated. / 5. Based on customer reviews

Summary of Contents

Page 1 - -V Series

MANUAL NO. SIEP S800000 60ESGDV SERVOPACKSGMJV/SGMAV/SGMPS/SGMGV/SGMSV/SGMCS ServomotorsRotational MotorCommand Option Attachable Type-V SeriesAC S

Page 2

x Disposal General Precautions CAUTION• When disposing of the products, treat them as ordinary industrial waste.Observe the following general pr

Page 3 - About this Manual

4.2 Settings for Common Basic Functions4-17Operation(5) Brake Signal (/BK) Output Timing during Servomotor RotationIf an alarm occurs while the servo

Page 4

4 Operation4.2.8 Stopping Servomotor after Receiving Servo OFF Command or Alarm Occurrence4-184.2.8 Stopping Servomotor after Receiving Servo OFF Co

Page 5 - MANDATORY

4.2 Settings for Common Basic Functions4-19Operation(2) Stopping Method for Servomotor When an Alarm OccursThere are two type of alarms (Gr.1 and Gr.

Page 6 - Safety Precautions

4 Operation4.2.9 Instantaneous Power Interruption Settings4-204.2.9 Instantaneous Power Interruption SettingsDetermines whether to continue operatio

Page 7

4.2 Settings for Common Basic Functions4-21Operation4.2.10 SEMI-F47 Function (Torque Limit Function for Low Power Supply Voltage for Main Circuit)The

Page 8

4 Operation4.2.10 SEMI-F47 Function (Torque Limit Function for Low Power Supply Voltage for Main Circuit)4-22(1) Execution MethodThis function can b

Page 9

4.2 Settings for Common Basic Functions4-23Operation(2) Related Parameters∗ The setting unit is a percentage of the rated torque.Note: When using SEM

Page 10 - CAUTION

4 Operation4.2.11 Setting Motor Overload Detection Level4-244.2.11 Setting Motor Overload Detection LevelIn this SERVOPACK, the detection timing of

Page 11 - Warranty

4.2 Settings for Common Basic Functions4-25Operation(2) Changing Detection Timing of Overload Alarm (A.720)An overload alarm (continuous overload) ca

Page 12 - (4) Specifications Change

4 Operation4.3.1 Related Parameters4-264.3 Test Without Motor FunctionThe test without motor function is used to check the operation of the host and

Page 13 - Applicable Standards

xiWarranty(1) Details of Warranty Warranty PeriodThe warranty period for a product that was purchased (hereinafter called “delivered product”) is one

Page 14 - Contents

4.3 Test Without Motor Function4-27Operation4.3.2 LimitationsThe following functions cannot be used during the test without motor.• Regeneration and

Page 15

4 Operation4.3.3 Digital Operator Display during Testing without Motor4-284.3.3 Digital Operator Display during Testing without MotorThe mark (∗) is

Page 16

4.4 Limiting Torque4-29Operation4.4 Limiting TorqueThe SERVOPACK provides the following three methods for limiting output torque to protect the machi

Page 17

4 Operation4.4.2 External Torque Limit4-304.4.2 External Torque LimitUse this function to limit torque by inputting a signal from the host controlle

Page 18 - Revision History

4.4 Limiting Torque4-31Operation(3) Changes in Output Torque during External Torque LimitingChanges in output torque when external torque limit is se

Page 19

4 Operation4-324.5 Absolute EncodersIf using an absolute encoder, a system to detect the absolute position can be designed for use with the host cont

Page 20 - 1.3 Part Names

4.5 Absolute Encoders4-33Operation4.5.1 Connecting the Absolute EncoderThe following diagram shows the connection between a servomotor with an absolu

Page 21 - 1.4.1 Ratings

4 Operation4.5.1 Connecting the Absolute Encoder4-34(2) Installing the Battery in the Host Controller∗1. The absolute encoder pin numbers for the co

Page 22 - 1.4.2 Basic Specifications

4.5 Absolute Encoders4-35Operation4.5.2 Absolute Data Request (Sensor ON Command)The Sensor ON command must be sent to obtain absolute data as an out

Page 23 - ± 1%): 1.2 ms (Typ)

4 Operation4.5.3 Battery Replacement4-364.5.3 Battery ReplacementIf the battery voltage drops to approximately 2.7 V, an absolute encoder battery er

Page 24 - 1 Outline

xii(3) Suitability for Use1. It is the customer’s responsibility to confirm conformity with any standards, codes, or regulations that apply if the

Page 25 - B1/ B2 B3

4.5 Absolute Encoders4-37Operation3. Remove the old battery and mount the battery (JZSP-BA01) as shown below.4. Close the battery case cover.5. After

Page 26

4 Operation4.5.4 Absolute Encoder Setup (Initialization)4-384.5.4 Absolute Encoder Setup (Initialization)Setting up the absolute encoder is necessar

Page 27

4.5 Absolute Encoders4-39Operation4.5.5 Absolute Encoder Reception SequenceThe sequence in which the SERVOPACK receives outputs from the absolute enc

Page 28

4 Operation4.5.5 Absolute Encoder Reception Sequence4-40Rotational serial data:Indicates how many turns the motor shaft has made from the reference

Page 29 - (24 VDC) is not included.)

4.5 Absolute Encoders4-41Operation(3) Rotational Serial Data Specifications and Initial Incremental Pulses Rotational Serial Data SpecificationsThe

Page 30

4 Operation4.5.6 Multiturn Limit Setting4-424.5.6 Multiturn Limit SettingThe multiturn limit setting is used in position control applications for a

Page 31

4.5 Absolute Encoders4-43OperationSet the value, the desired rotational amount -1, to Pn205.Note:A direct-drive servomotor with the standard specific

Page 32 - FE1A SERVOPACK

4 Operation4.6.1 Hard Wire Base Block (HWBB) Function4-444.6 Safety FunctionThe safety function is incorporated in the SERVOPACK to reduce the risk

Page 33 - 200 VAC

4.6 Safety Function4-45Operation(2) Hard Wire Base Block (HWBB) StateThe SERVOPACK will be in the following state if the HWBB function operates. If t

Page 34

4 Operation4.6.1 Hard Wire Base Block (HWBB) Function4-46(3) Resetting the HWBB StateBy receiving a servo ON command again after both /HWBB1 and /HW

Page 35 - DE1A

xiiiApplicable Standards North American Safety Standards (UL/CSA)∗ Underwriters Laboratories Inc. European StandardsNote: Because SERVOPACKs and ser

Page 36

4.6 Safety Function4-47Operation(5) Connection Example and Specifications of Input Signals (HWBB Signals)The input signals must be redundant. A conne

Page 37 - (1) SERVOPACK Inspection

4 Operation4.6.1 Hard Wire Base Block (HWBB) Function4-48(6) Operation with Utility FunctionsThe HWBB function works while the SERVOPACK operates in

Page 38

4.6 Safety Function4-49Operation4.6.2 External Device Monitor (EDM1)The external device monitor (EDM1) functions to monitor failures in the HWBB func

Page 39 - 2.1 Panel Display

4 Operation4.6.2 External Device Monitor (EDM1)4-50(1) Connection Example and Specifications of EDM1 Output SignalConnection example and specificati

Page 40

4.6 Safety Function4-51Operation4.6.3 Application Example of Safety FunctionsAn example of using safety functions is shown below. (1) Connection Exam

Page 41 - Emergency Stop Torque

4 Operation4.6.4 Confirming Safety Functions4-52(3) Usage Example4.6.4 Confirming Safety FunctionsWhen starting the equipment or replacing the SERVO

Page 42 - 㨁㨚㧜㧜㧰㧩㧜㧜㧜㧜㧜㧜㧜㧜

4.6 Safety Function4-53Operation4.6.5 Connecting a Safety DeviceThere are two types of the safety function’s jumper connectors that are attached to S

Page 43 - 㨁㨚㧜㧜㧰㧩㧜㧜㧜㧜㧜㧜㧜㧜

4 Operation4.6.6 Precautions for Safety Functions4-543. Connect the safety function device to the safety connector (CN8).Note: If you do not connect

Page 44 - 㨁㨚㧜㧜㧜㧩ޓ㧜㧜㧜㧜㧜

5-1Adjustments5Adjustments5.1 Adjustments and Basic Adjustment Procedure . . . . . . . . . . . . . . . . . . . . .5-35.1.1 Adjustments . . . . . .

Page 45 - Wiring and Connection

5 Adjustments 5-25.8 Additional Adjustment Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-515.8.1 Switching Gain Settin

Page 46 - SGDV-1R6AE1A

xivContentsAbout this Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iiiS

Page 47 - 200-V, or Three-phase 400-V)

5.1 Adjustments and Basic Adjustment Procedure5-3Adjustments5.1 Adjustments and Basic Adjustment ProcedureThis section describes adjustments and the

Page 48 - R70 R90 1R6 2R8 3R8 5R5 7R6

5 Adjustments5.1.2 Basic Adjustment Procedure5-45.1.2 Basic Adjustment ProcedureThe basic adjustment procedure is shown in the following flowchart.

Page 49

5.1 Adjustments and Basic Adjustment Procedure5-5Adjustments5.1.3 Monitoring Analog SignalsCheck the operating status and signal waveform when adjust

Page 50

5 Adjustments5.1.3 Monitoring Analog Signals5-6(2) Setting Monitor FactorThe output voltages on analog monitor 1 and 2 are calculated by the followi

Page 51 - • SGDV-470A, 550A, 590A, 780A

5.1 Adjustments and Basic Adjustment Procedure5-7Adjustments(4) Connector CN5 for Analog MonitorTo monitor analog signals, connect a measuring instru

Page 52 - • SGDV-210D, 260D, 280D, 370D

5 Adjustments5.1.4 Safety Precautions on Adjustment of Servo Gains5-85.1.4 Safety Precautions on Adjustment of Servo GainsYaskawa recommends that th

Page 53

5.1 Adjustments and Basic Adjustment Procedure5-9Adjustments Related Parameter Related Alarm(4) Vibration Detection FunctionSet the vibration detec

Page 54

5 Adjustments5.2.1 Tuning-less Function5-105.2 Tuning-less Function The tuning-less function is enabled in the factory settings. Do not disable this

Page 55 - 3.1 Main Circuit Wiring

5.2 Tuning-less Function5-11Adjustments∗ Operate using SigmaWin+.(3) Automatically Setting the Notch FilterUsually, set this function to Auto Setting

Page 56

5 Adjustments5.2.1 Tuning-less Function5-12 Tuning-less Load LevelThe servo gain can be adjusted by using the utility function and parameter settin

Page 57

xvChapter 3 Wiring and Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13.1 Main Circuit Wiring. . . . . . . . . . . . .

Page 58

5.2 Tuning-less Function5-13Adjustments5.2.2 Tuning-less Levels Setting (Fn200) ProcedureThe following procedure is used for setting the tuning-less

Page 59

5 Adjustments5.2.2 Tuning-less Levels Setting (Fn200) Procedure5-14Note: If the gain level is changed, the automatically set notch filter will be ca

Page 60

5.3 Advanced Autotuning (Fn201)5-15Adjustments5.3 Advanced Autotuning (Fn201)This section describes the adjustments with advanced autotuning.5.3.1 Ad

Page 61 - (2) Precautions

5 Adjustments5.3.1 Advanced Autotuning5-16• Friction compensation• Anti-resonance control• Vibration suppression (Mode = 2 or 3)Refer to 5.3.3 Relat

Page 62

5.3 Advanced Autotuning (Fn201)5-17Adjustments• The mode switch is used.Note:If a setting is made for calculating the moment of inertia, the mode swi

Page 63 - 3.2 I/O Signal Connections

5 Adjustments5.3.2 Advanced Autotuning Procedure5-183Press the , or Key and set the items in steps 3-1 to 3-4.3-1Calculating Moment of InertiaS

Page 64 - (2) Output Signals

5.3 Advanced Autotuning (Fn201)5-19Adjustments(2) Failure in Operation If “NO-OP” is shown6Display example:After the moment of inertia is calculated

Page 65

5 Adjustments5.3.2 Advanced Autotuning Procedure5-20 If “Errors” is shown Errors during Calculation of Moment of InertiaThe following table shows

Page 66 - 3.3 I/O Signal Allocations

5.3 Advanced Autotuning (Fn201)5-21Adjustments(3) Related Functions Notch FilterUsually, set this function to Auto Setting. (The notch filter is fa

Page 67

5 Adjustments5.3.2 Advanced Autotuning Procedure5-22 Friction CompensationThis function compensates for changes in the following conditions.• Chang

Page 68

xvi4.5 Absolute Encoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-324.5.1 Connecting the Absolu

Page 69 - 3.4.1 Sequence Input Circuits

5.3 Advanced Autotuning (Fn201)5-23Adjustments5.3.3 Related ParametersThe following parameters are set automatically by using advanced autotuning fun

Page 70 - (2) Safety Input Circuit

5 Adjustments5.4.1 Advanced Autotuning by Reference5-245.4 Advanced Autotuning by Reference (Fn202)This section describes the adjustments with advan

Page 71 - 5 to 12 VDC

5.4 Advanced Autotuning by Reference (Fn202)5-25Adjustments(1) Before Performing Advanced Autotuning by ReferenceCheck the following settings before

Page 72 - (3) Safety Output Circuit

5 Adjustments5.4.2 Advanced Autotuning by Reference Procedure5-265.4.2 Advanced Autotuning by Reference Procedure The following procedure is used fo

Page 73

5.4 Advanced Autotuning by Reference (Fn202)5-27Adjustments(2) Failure in Operation If “NO-OP” is shown If “Error” is shown8Press the Key. The ad

Page 74 - 3.6 Encoder Connections

5 Adjustments5.4.2 Advanced Autotuning by Reference Procedure5-28(3) Related Functions Notch FilterUsually, set this function to Auto Setting. (The

Page 75 - SN75ALS174

5.4 Advanced Autotuning by Reference (Fn202)5-29Adjustments Friction CompensationThis function compensates for changes in the following conditions.•

Page 76

5 Adjustments5.4.3 Related Parameters5-305.4.3 Related ParametersThe following parameters are set automatically by using advanced autotuning by refe

Page 77 - JUSP-RA-E

5.5 One-parameter Tuning (Fn203)5-31Adjustments5.5 One-parameter Tuning (Fn203)This section describes the adjustments with one-parameter tuning.5.5.1

Page 78

5 Adjustments5.5.2 One-parameter Tuning Procedure5-325.5.2 One-parameter Tuning ProcedureThe following procedure is used for one-parameter tuning.Op

Page 79

xviiChapter 6 Utility Functions (Fn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-16.1 List of Utility Functions. . . . . . . . . .

Page 80 - Signal generation

5.5 One-parameter Tuning (Fn203)5-33Adjustments7Adjust the responsiveness by changing the level. After pressing the Key, the present level will be

Page 81 - Wrong Correct

5 Adjustments5.5.2 One-parameter Tuning Procedure5-34(2) Setting the Tuning Mode to 2 or 3Step Display after Operation Keys Operation1Press the Ke

Page 82

5.5 One-parameter Tuning (Fn203)5-35Adjustments7Adjust the responsiveness by changing the FF and FB levels.Press the Key to display the present lev

Page 83 - DC reactor

5 Adjustments5.5.2 One-parameter Tuning Procedure5-36(3) Related Functions This section describes functions related to one-parameter tuning. Notch

Page 84

5.5 One-parameter Tuning (Fn203)5-37Adjustments FeedforwardIf Pn140 is set to the factory setting and the mode setting is changed to 2 or 3, the fee

Page 85

5 Adjustments5.5.3 One-parameter Tuning Example5-385.5.3 One-parameter Tuning ExampleThe following procedure is used for one-parameter tuning on the

Page 86 - (2) SERVOPACKs

5.5 One-parameter Tuning (Fn203)5-39Adjustments5.5.4 Related ParametersThe following parameters are set automatically by using one-parameter tuning.

Page 87

5 Adjustments5.6.1 Anti-resonance Control Adjustment Function5-405.6 Anti-resonance Control Adjustment Function (Fn204)This section describes how to

Page 88

5.6 Anti-resonance Control Adjustment Function (Fn204)5-41Adjustments5.6.2 Anti-resonance Control Adjustment Function Operating ProcedureWith this fu

Page 89 - 4.2.3 Overtravel

5 Adjustments5.6.2 Anti-resonance Control Adjustment Function Operating Procedure5-426Press the Key. The cursor will move to “damp,” and the blink

Page 90

xviiiChapter 9 Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-19.1 Troubleshooting . . . . . . . . .

Page 91 - Workpiece

5.6 Anti-resonance Control Adjustment Function (Fn204)5-43Adjustments(2) With Determined Vibration Frequency Before Adjusting the Anti-resonance Cont

Page 92 -  Encoder Resolution

5 Adjustments5.6.2 Anti-resonance Control Adjustment Function Operating Procedure5-447Move the cursor with the or Key and press the or Key t

Page 93 - 4.2.4 Electronic Gear

5.6 Anti-resonance Control Adjustment Function (Fn204)5-45Adjustments(3) For Fine-tuning After Adjusting the Anti-resonance Control5.6.3 Related Para

Page 94 - 4.2.5 Encoder Output Pulses

5 Adjustments5.7.1 Vibration Suppression Function5-465.7 Vibration Suppression Function (Fn205)This section describes the vibration suppression func

Page 95

5.7 Vibration Suppression Function (Fn205)5-47AdjustmentsNote: Use a set value of 10% as a guideline. The smaller the set value is, the higher the de

Page 96 - 4.2.7 Holding Brakes

5 Adjustments5.7.2 Vibration Suppression Function Operating Procedure5-48(2) Operating ProcedureStep Display after Operation Keys Operation1 Input a

Page 97

5.7 Vibration Suppression Function (Fn205)5-49Adjustments(3) Related Function This section describes a function related to vibration suppression. Fe

Page 98 - Photocoupler

5 Adjustments5.7.3 Related Parameters5-505.7.3 Related ParametersThe following parameters are set automatically by using vibration suppression funct

Page 99 - 4.2.7 Holding Brakes

5.8 Additional Adjustment Function5-51Adjustments5.8 Additional Adjustment FunctionThis section describes the functions that can be used for addition

Page 100 - 46 and 64

5 Adjustments5.8.1 Switching Gain Settings5-52(3) Automatic Gain SwitchingAutomatic gain switching is performed under the following settings and con

Page 101 - Occurrence

1-1Outline1Outline1.1 Σ-V Series SERVOPACKs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-21.2 SERVOPACKs . . . . . .

Page 102 - Operation

5.8 Additional Adjustment Function5-53Adjustments Relationship between the Gain Switching Waiting Time and the Switching Time ConstantIn this exampl

Page 103 - Position

5 Adjustments5.8.1 Switching Gain Settings5-54(4) Related ParametersPn100Speed Loop GainClassificationSetting Range Setting Unit Factory Setting Whe

Page 104 - Main Circuit)

5.8 Additional Adjustment Function5-55Adjustments(5) Parameters for Automatic Gain Switching(6) Related MonitorNote: When using the tuning-less funct

Page 105 - (1) Execution Method

5 Adjustments5.8.2 Friction Compensation5-565.8.2 Friction CompensationFriction compensation rectifies the viscous friction change and regular load

Page 106 - (2) Related Parameters

5.8 Additional Adjustment Function5-57Adjustments(2) Operating Procedure for Friction CompensationThe following procedure is used for friction compen

Page 107

5 Adjustments5.8.3 Current Control Mode Selection5-585.8.3 Current Control Mode SelectionThis function reduces high-frequency noises while the motor

Page 108

5.9 Compatible Adjustment Function5-59Adjustments5.9 Compatible Adjustment FunctionThe Σ-V series SERVOPACKs have the adjustment functions explained

Page 109 - 4.3.1 Related Parameters

5 Adjustments5.9.2 Using the Mode Switch (P/PI Switching)5-60(1) Related ParametersSelect the conditions to switch modes (P or PI control switching)

Page 110 - 4.3.2 Limitations

5.9 Compatible Adjustment Function5-61Adjustments<Example>If the mode switch function is not being used and the SERVOPACK is always operated wi

Page 111 - 4 Operation

5 Adjustments5.9.2 Using the Mode Switch (P/PI Switching)5-62 Using the Acceleration Level to Switch ModesWith this setting, the speed loop is swit

Page 112 - Internal Torque Limit

Copyright © 2009 YASKAWA ELECTRIC CORPORATIONAll rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or tra

Page 113 - 4.4.2 External Torque Limit

1 Outline 1-21.1 Σ-V Series SERVOPACKsThe Σ-V Series SERVOPACKs are designed for applications that require frequent high-speed, high-precision posit

Page 114 - 4.4 Limiting Torque

5.9 Compatible Adjustment Function5-63Adjustments Using the Position Error Pulse Level to Switch ModesWith this setting, the speed loop is switched

Page 115 - PROHIBITED

5 Adjustments5.9.3 Torque Reference Filter5-645.9.3 Torque Reference FilterAs shown in the following diagram, the torque reference filter contains f

Page 116 - SERVOPACK

5.9 Compatible Adjustment Function5-65Adjustments5.9.4 Position Integral Time ConstantThis function adds an integral control operation to the positio

Page 117

6-1Utility Functions (Fn)6Utility Functions (Fn)6.1 List of Utility Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 118

6 Utility Functions (Fn) 6-26.1 List of Utility FunctionsUtility functions are used to execute the functions related to servomotor operation and

Page 119 - 4.5.3 Battery Replacement

6.2 Alarm History Display (Fn000)6-3Utility Functions (Fn)6.2 Alarm History Display (Fn000)This function displays the alarm history to check the t

Page 120

6 Utility Functions (Fn) 6-46.3 JOG Operation (Fn002)JOG operation is used to check the operation of the servomotor under speed control without c

Page 121

6.3 JOG Operation (Fn002)6-5Utility Functions (Fn)6Press the Key.“RUN” is displayed in the status display, and power is applied to the servomotor

Page 122

6 Utility Functions (Fn) 6-66.4 Origin Search (Fn003)The origin search is designed to position the origin pulse position of the incremental encod

Page 123

6.4 Origin Search (Fn003)6-7Utility Functions (Fn)4Pressing the Key will rotate the motor in the for-ward direction. Pressing the Key will rot

Page 124 - 00000 1010 1

1.4 SERVOPACK Ratings and Specifications1-3Outline1.4 SERVOPACK Ratings and SpecificationsThis section describes the ratings and specifications of SE

Page 125 - 4.5.6 Multiturn Limit Setting

6 Utility Functions (Fn) 6-86.5 Program JOG Operation (Fn004)The Program JOG Operation is a utility function, that allows continuous automatic op

Page 126 - - FUNCTION

6.5 Program JOG Operation (Fn004)6-9Utility Functions (Fn)Note: For details of Pn530, refer to (3) Setting Infinite Time Operation and (4) Progr

Page 127 - 4.6 Safety Function

6 Utility Functions (Fn) 6-10Note: When 3 is set to Pn530.0, infinite time operation is disabled.Pn530.0 = 1(Waiting time Pn535 → Reverse movemen

Page 128 - (HWBB) state

6.5 Program JOG Operation (Fn004)6-11Utility Functions (Fn)Pn530.0 = 4 (Waiting time Pn535 → Forward movement Pn531 → Waiting time Pn535 → Reverse

Page 129

6 Utility Functions (Fn) 6-12(5) Operating ProcedureFollow the steps below to perform the program JOG operation after setting a program for JOG o

Page 130 -  Specifications

6.6 Initializing Parameter Settings (Fn005)6-13Utility Functions (Fn)6.6 Initializing Parameter Settings (Fn005)This function is used when returni

Page 131

6 Utility Functions (Fn) 6-146.7 Clearing Alarm History (Fn006)The clear alarm history function deletes all of the alarm history recorded in the

Page 132 - WARNING

6.8 Offset Adjustment of Analog Monitor Output (Fn00C)6-15Utility Functions (Fn)6.8 Offset Adjustment of Analog Monitor Output (Fn00C)This functio

Page 133

6 Utility Functions (Fn) 6-163Press the or Key to adjust the offset of CH1 (torque reference monitor).Adjust the offset so that the measurement i

Page 134 - (2) Failure Detection Method

6.9 Gain Adjustment of Analog Monitor Output (Fn00D)6-17Utility Functions (Fn)6.9 Gain Adjustment of Analog Monitor Output (Fn00D)This function is

Page 135 - (3) Usage Example

1 Outline1.4.2 Basic Specifications1-41.4.2 Basic SpecificationsBasic specifications of SERVOPACKs are shown below.Control Method IGBT-PWM (sine-wav

Page 136 - (1) Connector Type A

6 Utility Functions (Fn) 6-18(2) Operating ProcedureFollow the steps below to perform the gain adjustment of analog monitor output.Step Display E

Page 137

6.10 Automatic Offset-Signal Adjustment of the Motor Current Detection (Fn00E)6-19Utility Functions (Fn)6.10 Automatic Offset-Signal Adjustment of

Page 138 - Adjustments

6 Utility Functions (Fn) 6-206.11 Manual Offset-Signal Adjustment of the Motor Current Detection (Fn00F)Use this function only if the torque ripp

Page 139 - 5 Adjustments

6.12 Write Prohibited Setting (Fn010)6-21Utility Functions (Fn)6.12 Write Prohibited Setting (Fn010)Prohibiting writing prevents writing parameter

Page 140 - 5.1.1 Adjustments

6 Utility Functions (Fn) 6-22(2) Operating ProcedureFollow the steps below to set “write prohibited” or “write permitted.”Setting values are as

Page 141

6.13 Servomotor Model Display (Fn011)6-23Utility Functions (Fn)6.13 Servomotor Model Display (Fn011)This function is used to check the servomotor

Page 142 - (1) Monitor Signal

6 Utility Functions (Fn) 6-246.14 Software Version Display (Fn012)Select Fn012 to check the SERVOPACK and encoder software version numbers.Follow

Page 143 - (3) Related Parameters

6.15 Resetting Configuration Error of Option Module (Fn014)6-25Utility Functions (Fn)6.15 Resetting Configuration Error of Option Module (Fn014)Th

Page 144 - <Example>

6 Utility Functions (Fn) 6-266.16 Vibration Detection Level Initialization (Fn01B)This function detects vibration when servomotor is connected to

Page 145

6.16 Vibration Detection Level Initialization (Fn01B)6-27Utility Functions (Fn)(2) Related ParametersUse the following parameters as required. Not

Page 146 -  Related Parameters

1.4 SERVOPACK Ratings and Specifications1-5Outline∗1. Rack mounting and duct-ventilated type available as an option.∗2. Speed regulation by load fluc

Page 147 - 5.2 Tuning-less Function

6 Utility Functions (Fn) 6-286.17 Display of SERVOPACK and Servomotor ID (Fn01E)This function displays ID information for SERVOPACK, servomotor,

Page 148 - 5.2 Tuning-less Function

6.18 Display of Servomotor ID in Feedback Option Module (Fn01F)6-29Utility Functions (Fn)6.18 Display of Servomotor ID in Feedback Option Module (

Page 149 - 5.2.1 Tuning-less Function

6 Utility Functions (Fn) 6-306.19 Origin Setting (Fn020)When using an external encoder for fully-closed loop control, this function is used to se

Page 150

6.20 Software Reset (Fn030)6-31Utility Functions (Fn)6.20 Software Reset (Fn030)This function enables resetting the SERVOPACK internally from soft

Page 151

6 Utility Functions (Fn) 6-326.21 EasyFFT (Fn206)EasyFFT sends a frequency waveform reference from the SERVOPACK to the servomotor and rotates th

Page 152 - 5.3.1 Advanced Autotuning

6.21 EasyFFT (Fn206)6-33Utility Functions (Fn)(1) Operating ProcedureFollow the steps below.• Starts EasyFFT when the servomotor power is OFF.•

Page 153

6 Utility Functions (Fn) 6-343The cursor is on the setting of "Input." Press the or Key to set the sweep torque reference amplitude (Pn

Page 154

6.21 EasyFFT (Fn206)6-35Utility Functions (Fn)(2) Related ParametersThe Easy FFT related parameters are listed below. These parameters will be aut

Page 155

6 Utility Functions (Fn) 6-366.22 Online Vibration Monitor (Fn207)The machine vibration can sometimes be suppressed by setting a notch filter or

Page 156 - (2) Failure in Operation

6.22 Online Vibration Monitor (Fn207)6-37Utility Functions (Fn)(1) Operating Procedure Follow the steps below.(2) Related ParametersThe following

Page 157

1 Outline1.5.1 Single-phase 100-V, SGDV-R70FE1A, -R90FE1A, -2R1FE1A Models1-61.5 SERVOPACK Internal Block Diagrams1.5.1 Single-phase 100-V, SGDV-R70

Page 158 - (3) Related Functions

7-1Monitor Modes (Un)7Monitor Modes (Un)7.1 List of Monitor Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 159

7 Monitor Modes (Un) 7-27.1 List of Monitor ModesThe monitor mode can be used for monitoring the reference values, I/O signal status, and SERVOPA

Page 160 - 5.3.3 Related Parameters

7.2 Monitor Displays7-3Monitor Modes (Un)7.2 Monitor DisplaysMonitor mode can be checked in the Parameter/Monitor Mode (-PRM/MON-) window of the d

Page 161

8-1Fully-closed Loop Control8Fully-closed Loop Control8.1 System Configuration and Connection Example for SERVOPACK with Fully-closed Loop Control

Page 162

8 Fully-closed Loop Control8.1.1 System Configuration8-28.1 System Configuration and Connection Example for SERVOPACK with Fully-closed Loop Control

Page 163 - (1) Operating Procedure

8.1 System Configuration and Connection Example for SERVOPACK with Fully-closed Loop Control8-3Fully-closed Loop Control8.1.2 Internal Block Diagram

Page 164 - 㧼㨚㧝㧠㧝㧩㧜㧝㧡㧜㧚㧜

8 Fully-closed Loop Control8.1.3 Serial Converter Unit8-48.1.3 Serial Converter UnitThis section provides the specification of the serial converter

Page 165 - (3) Related Functions

8.1 System Configuration and Connection Example for SERVOPACK with Fully-closed Loop Control8-5Fully-closed Loop Control(2) Analog Signal Input Timin

Page 166

8 Fully-closed Loop Control8.1.4 Example of Connections to External Encoders8-68.1.4 Example of Connections to External Encoders(1) External Encoder

Page 167 - 5.4.3 Related Parameters

8.1 System Configuration and Connection Example for SERVOPACK with Fully-closed Loop Control8-7Fully-closed Loop Control8.1.5 Encoder Output Pulse Si

Page 168

1.5 SERVOPACK Internal Block Diagrams1-7Outline1.5.3 Single-phase 200-V, SGDV-120AE1A008000 Model1.5.4 Three-phase 200-V, SGDV-R70AE1A, -R90AE1A, -1R

Page 169 - Status Display

8 Fully-closed Loop Control8.1.6 Precautions When Using an External Incremental Encoder by Magnescale8-88.1.6 Precautions When Using an External Inc

Page 170

8.1 System Configuration and Connection Example for SERVOPACK with Fully-closed Loop Control8-9Fully-closed Loop Control When Passing 1st Zero Point

Page 171

8 Fully-closed Loop Control8.1.6 Precautions When Using an External Incremental Encoder by Magnescale8-10 When Using an External Encoder with Multi

Page 172

8.1 System Configuration and Connection Example for SERVOPACK with Fully-closed Loop Control8-11Fully-closed Loop ControlNote: A SERVOPACK with softw

Page 173

8 Fully-closed Loop Control8-128.2 SERVOPACK Startup ProcedureFirst check that the SERVOPACK operates correctly with semi-closed loop control, then c

Page 174

8.2 SERVOPACK Startup Procedure8-13Fully-closed Loop Control4Perform a program JOG opera-tion.Items to Check• Does the fully-closed loop control oper

Page 175

8 Fully-closed Loop Control8-148.3 Parameter Settings for Fully-closed Loop ControlThis section describes the parameter settings for fully-closed loo

Page 176 - 5.5.4 Related Parameters

8.3 Parameter Settings for Fully-closed Loop Control8-15Fully-closed Loop Control8.3.1 Motor Rotation DirectionThe motor rotation direction can be se

Page 177

8 Fully-closed Loop Control8.3.1 Motor Rotation Direction8-16(3) Relation between Motor Rotation Direction and External Encoder Pulse PhasesRefer to

Page 178

8.3 Parameter Settings for Fully-closed Loop Control8-17Fully-closed Loop Control8.3.2 Sine Wave Pitch (Frequency) for an External EncoderSet the num

Page 179

1 Outline1.5.5 Three-phase 200-V, SGDV-2R8AE1A Model1-81.5.5 Three-phase 200-V, SGDV-2R8AE1A Model1.5.6 Three-phase 200-V, SGDV-3R8AE1A, -5R5AE1A, -

Page 180

8 Fully-closed Loop Control8.3.4 External Absolute Encoder Data Reception Sequence8-18(2) Related ParameterNote: The maximum setting for the encoder

Page 181

8.3 Parameter Settings for Fully-closed Loop Control8-19Fully-closed Loop Control(2) Absolute Data Transmission Sequence and Contents1. Send the sens

Page 182 - 5.6.3 Related Parameters

8 Fully-closed Loop Control8.3.4 External Absolute Encoder Data Reception Sequence8-20(3) Serial Data SpecificationsThe serial data is output from t

Page 183

8.3 Parameter Settings for Fully-closed Loop Control8-21Fully-closed Loop Control8.3.5 Electronic GearRefer to 4.2.4 Electronic Gear for the purpose

Page 184 - (1) Operating Flow

8 Fully-closed Loop Control8.3.6 Alarm Detection8-22 Setting ExampleIf the servomotor moves 0.2 μm for every pulse of position reference, the exter

Page 185 - (2) Operating Procedure

8.3 Parameter Settings for Fully-closed Loop Control8-23Fully-closed Loop Control8.3.7 Analog Monitor SignalThe position error between servomotor and

Page 186 - (3) Related Function

9-1Troubleshooting9Troubleshooting9.1 Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9-29.1

Page 187 - 5.7.3 Related Parameters

9 Troubleshooting9.1.1 List of Alarms9-29.1 TroubleshootingThe following sections describe troubleshooting in response to alarm displays.The alarm n

Page 188 - 5.8.1 Switching Gain Settings

9.1 Troubleshooting9-3TroubleshootingA.410 Undervoltage Main circuit DC voltage is excessively low. Gr.2 AvailableA.450Main-Circuit Capacitor Overvol

Page 189 - (3) Automatic Gain Switching

9 Troubleshooting9.1.1 List of Alarms9-4A.C80Absolute Encoder Clear Error and Multi-turn Limit Setting ErrorThe multi-turn for the absolute encoder

Page 190

1.5 SERVOPACK Internal Block Diagrams1-9Outline1.5.7 Three-phase 200-V, SGDV-120AE1A Model1.5.8 Three-phase 200-V, SGDV-180AE1A, -200AE1A ModelsL1B1/

Page 191 - (4) Related Parameters

9.1 Troubleshooting9-5Troubleshooting∗ This alarm may occur when a fully-closed option module is mounted.A.E73Unsupported Command Option ModuleAn uns

Page 192 - (6) Related Monitor

9 Troubleshooting9.1.2 Troubleshooting of Alarms9-69.1.2 Troubleshooting of AlarmsWhen an error occurs in SERVOPACKs, an alarm is displayed such as

Page 193 - 5.8.2 Friction Compensation

9.1 Troubleshooting9-7TroubleshootingA.042:Parameter Combination ErrorThe speed of program JOG oper-ation (Fn004) is lower than the setting range aft

Page 194

9 Troubleshooting9.1.2 Troubleshooting of Alarms9-8A.051:Unsupported Device AlarmAn unsupported serial converter unit, serial encoder, or external e

Page 195

9.1 Troubleshooting9-9TroubleshootingA.300:Regeneration ErrorRegenerative resistor capacity (Pn600) is set to a value other than 0 for a SGDV-R70, -R

Page 196 - 5.9.1 Feedforward Reference

9 Troubleshooting9.1.2 Troubleshooting of Alarms9-10A.400:Overvoltage(Detected in the SER-VOPACK's main circuit power supply section.)• For 100

Page 197 - (1) Related Parameters

9.1 Troubleshooting9-11TroubleshootingA.410:Undervoltage(Detected in the SER-VOPACK main circuit power supply section.)• For 100 VAC SERVOPACKs: The

Page 198

9 Troubleshooting9.1.2 Troubleshooting of Alarms9-12A.710:A.720:Overload A.710: High LoadA.720: Low LoadIncorrect wiring or contact fault of servomo

Page 199

9.1 Troubleshooting9-13TroubleshootingA.810:Encoder Backup Error(Detected on the encoder side)(Only when an absolute encoder is connected.)Alarm occu

Page 200

9 Troubleshooting9.1.2 Troubleshooting of Alarms9-14A.860:Encoder Overheated(Only when an absolute encoder is connected.)(Detected on the encoder si

Page 201 - 5.9.3 Torque Reference Filter

1 Outline1.5.9 Three-phase 200-V, SGDV-330AE1A Model1-101.5.9 Three-phase 200-V, SGDV-330AE1A Model1.5.10 Three-phase 200-V, SGDV-470AE1A, -550AE1A

Page 202

9.1 Troubleshooting9-15TroubleshootingA.bF1:System Alarm 1A SERVOPACK fault occurred. −Turn the power supply OFF and then ON again. If the alarm stil

Page 203 - Utility Functions (Fn)

9 Troubleshooting9.1.2 Troubleshooting of Alarms9-16A.C91:Encoder Communications Position Data ErrorThe noise interference occurred on the input/out

Page 204 - 6.1 List of Utility Functions

9.1 Troubleshooting9-17TroubleshootingA.CC0:Multi-turn Limit DisagreementWhen using a direct-drive (DD) servomotor, the multi-turn limit value (Pn205

Page 205 - Utility Functions (Fn)

9 Troubleshooting9.1.2 Troubleshooting of Alarms9-18A.d02:Position Error Pulse Overflow Alarm by Speed Limit at Servo ONAfter a position error pulse

Page 206 - 6.3 JOG Operation (Fn002)

9.1 Troubleshooting9-19TroubleshootingA.E50:Command Option Module IF Synchronization Error 2The timing of synchronization between the servomotor and

Page 207 - 6.3 JOG Operation (Fn002)

9 Troubleshooting9.1.2 Troubleshooting of Alarms9-20A.E72*2:Feedback Option Module Detection FailureThe connection between the SERVOPACK and the fee

Page 208 - 6.4 Origin Search (Fn003)

9.1 Troubleshooting9-21TroubleshootingA.F10:Main Circuit Cable Open Phase(With the main power supply ON, voltage was low for more than 1 sec-ond in a

Page 209 - 6.4 Origin Search (Fn003)

9 Troubleshooting9.2.1 List of Warnings9-229.2 Warning DisplaysThe following sections describe troubleshooting in response to warning displays.The w

Page 210 - (2) Related Parametersf

9.2 Warning Displays9-23TroubleshootingNote 1. Set Pn001.3 =1 (Outputs both Alarm Codes and Warning Codes) to output warning codes.2. If Pn008.2 = 1

Page 211

9 Troubleshooting9.2.2 Troubleshooting of Warnings9-249.2.2 Troubleshooting of WarningsRefer to the following table to identity the cause of a warni

Page 212 - 6 Utility Functions (Fn)

1.5 SERVOPACK Internal Block Diagrams1-11Outline1.5.11 Three-phase 200-V, SGDV-590AE1A, -780AE1A Models1.5.12 Three-phase 400-V, SGDV-1R9DE1A, -3R5DE

Page 213

9.2 Warning Displays9-25TroubleshootingA.920Regenerative Overload:Warning before the alarm A.320 occursThe power supply volt-age exceeds the speci-fi

Page 214

9 Troubleshooting9.2.2 Troubleshooting of Warnings9-26A.94ECommand Option Module IF Data Setting Warning 5Incorrect latch mode settings were sent to

Page 215

9.2 Warning Displays9-27TroubleshootingA.971 Undervoltage• For 100-VAC SER-VOPACKs:The AC power supply voltage is 60 V or below.• For 200-VAC SER-VOP

Page 216

9 Troubleshooting9-289.3 Troubleshooting Malfunction Based on Operation and Conditions of the ServomotorTroubleshooting for the malfunctions based on

Page 217

9.3 Troubleshooting Malfunction Based on Operation and Conditions of the Servomotor9-29TroubleshootingAbnormal Noise from ServomotorThe servomotor la

Page 218

9 Troubleshooting9-30High Rotation Speed Overshoot on Starting and StoppingUnbalanced servo gainsCheck to see if the servo gains have been correctly

Page 219 - (1) Adjustment Example

9.3 Troubleshooting Malfunction Based on Operation and Conditions of the Servomotor9-31TroubleshootingOvertravel (OT)Forward or reverse run prohibite

Page 220

9 Troubleshooting9-32Position Error (Without Alarm)(cont’d)Noise interference due to length of I/O signal cableCheck the I/O signal cable length.The

Page 221 - Detection (Fn00E)

10-1Appendix10Appendix10.1 List of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10-210.1.1 Utility Fu

Page 222 - Detection (Fn00F)

10 Appendix10.1.1 Utility Functions10-210.1 List of Parameters10.1.1 Utility FunctionsThe following table lists the available utility functions.Note

Page 223

iiiAbout this ManualThis manual describes informations required for designing, and maintaining Σ-V Series SERVOPACKs.Be sure to refer to this manual a

Page 224

1 Outline1.5.13 Three-phase 400-V, SGDV-8R4DE1A, -120DE1A Models1-121.5.13 Three-phase 400-V, SGDV-8R4DE1A, -120DE1A Models1.5.14 Three-phase 400-V,

Page 225

10.1 List of Parameters10-3Appendix10.1.2 ParametersParameter No.NameSetting RangeUnitsFactory SettingWhen EnabledClassificationReference SectionPn00

Page 226

10 Appendix10.1.2 Parameters10-4Pn002Application Function Select Switch 2 0000 to 4113 − 0000 After restart Setup −Pn006Application Function Select

Page 227

10.1 List of Parameters10-5AppendixPn007Application Function Select Switch 7 0000 to 005F − 0000 Immediately Setup −Pn008Application Function Select

Page 228 - Detection level =ޓ

10 Appendix10.1.2 Parameters10-6Pn009Application Function Select Switch 9 0000 to 0111 − 0010 After restart Tuning −Pn00BApplication Function Select

Page 229

10.1 List of Parameters10-7AppendixPn00CApplication Function Select Switch C 0000 to 0111 − 0000 After restart Setup −Pn00DApplication Function Selec

Page 230

10 Appendix10.1.2 Parameters10-8Pn100 Speed Loop Gain 10 to 20000 0.1 Hz 400 Immediately Tuning5.8.1Pn101 Speed Loop Integral Time Constant 15 to 51

Page 231

10.1 List of Parameters10-9AppendixPn139Automatic Gain Changeover Related Switch 10000 to 0052 − 0000 Immediately Tuning −Pn13D Current Gain Level 10

Page 232 - 6.19 Origin Setting (Fn020)

10 Appendix10.1.2 Parameters10-10Pn143Model Following Control Bias (Forward Direction)0 to 10000 0.1% 1000 Immediately Tuning −Pn144Model Following

Page 233 - 6.20 Software Reset (Fn030)

10.1 List of Parameters10-11AppendixPn170Tuning-less Function Related Switch 0000 to 2411 − 1401 −−−Pn190Reserved Parameter(Do not change.)– – 0010 –

Page 234 - 6.21 EasyFFT (Fn206)

10 Appendix10.1.2 Parameters10-12Pn216Reserved Parameter(Do not change.)––0– – –Pn217Reserved Parameter(Do not change.)––0– – –Pn22AFully-closed Con

Page 235 - 6.21 EasyFFT (Fn206)

1.5 SERVOPACK Internal Block Diagrams1-13Outline1.5.15 Three-phase 400-V, SGDV-210DE1A, -260DE1A Models1.5.16 Three-phase 400-V, SGDV-280DE1A, -370DE

Page 236

10.1 List of Parameters10-13AppendixPn324Moment of Inertia Calculating Start Level0 to 20000 1% 300 Immediately Setup 5.3.2Pn400Reserved Parameter(Do

Page 237

10 Appendix10.1.2 Parameters10-14Pn423Reserved Parameter(Do not change.)– – 0000 – – –Pn424Torque Limit at Main Circuit Voltage Drop0 to 100 1% 50 I

Page 238

10.1 List of Parameters10-15AppendixPn50AInput Signal Selection 1 0000 to FFF1 − 1881 After restart Setup −(cont’d)Parameter No.NameSetting RangeUnit

Page 239

10 Appendix10.1.2 Parameters10-16Pn50BInput Signal Selection 2 0000 to FFFF − 8882 After restart Setup −(cont’d)Parameter No.NameSetting RangeUnitsF

Page 240 - Monitor Modes (Un)

10.1 List of Parameters10-17Appendix(cont’d)Parameter No.NameSetting RangeUnitsFactory SettingWhen Enabled ClassificationRefer-ence SectionPn50EOutpu

Page 241 - 7.1 List of Monitor Modes

10 Appendix10.1.2 Parameters10-18Pn510Output Signal Selection 3 0000 to 0033 − 0000 After restart Setup −(cont’d)Parameter No.NameSetting RangeUnits

Page 242 - 7.2 Monitor Displays

10.1 List of Parameters10-19AppendixPn511Input Signal Selection 5 0000 to FFFF − 6543 After restart Setup −(cont’d)Parameter No.NameSetting RangeUnit

Page 243 - Fully-closed Loop Control

10 Appendix10.1.2 Parameters10-20Pn512Output Signal Inverse Setting 0000 to 0111 − 0000 After restart Setup 3.3.2Pn513Reserved Parameter(Do not chan

Page 244 - 8.1.1 System Configuration

10.1 List of Parameters10-21AppendixPn530Program JOG Operation Related Switch0000 to 0005 − 0000 Immediately Setup 6.5Pn531 Program JOG Movement Dist

Page 245

10 Appendix10-2210.2 Monitor ModesThe following list shows monitor modes available.Un Number Content of Display UnitUn000 Motor rotating speedmin-1Un

Page 246 - 8.1.3 Serial Converter Unit

1 Outline1.6.1 Connecting to SGDV-FE1A SERVOPACK1-141.6 Examples of Servo System ConfigurationsThis section describes examples of basic servo sys

Page 247 - Rotation

10.3 Parameter Recording Table10-23Appendix10.3 Parameter Recording TableUse the following table for recording parameters.Note: Pn10B, Pn170 and Pn40

Page 248 - D-sub 15-pin connector

10 Appendix10-24Pn139 0000Automatic Gain Changeover Related Switch 1ImmediatelyPn13D 2000% Current Gain Level ImmediatelyPn140 0100Model Following Co

Page 249 - Renishaw external encoder

10.3 Parameter Recording Table10-25AppendixPn304500 min-1JOG Speed ImmediatelyPn305 0 ms Soft Start Acceleration Time ImmediatelyPn306 0 ms Soft Star

Page 250 -  When Passing 1st

10 Appendix10-26Pn50A 1881 Input Signal Selection 1 After restartPn50B 8822 Input Signal Selection 2 After restartPn50E 0000 Output Signal Selection

Page 251

IndexIndex-1IndexSymbols*BB - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4-28*HBB - - - - - - - - - - - - - -

Page 252 - 8 Fully-closed Loop Control

IndexIndex-2digital operator display during testing without motor - - - - - - - - - 4-28DIP switch (S2) - - - - - - - - - - - - - - - - - - - - - - -

Page 253

IndexIndex-3origin setting (Fn020) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6-30outline of absolute signals - - - - - - - - - -

Page 254

IndexIndex-4tuning-less adjustment level - - - - - - - - - - - - - - - - - - - - - - - - - 5-11tuning-less load level - - - - - - - - - - - - - - -

Page 255

Revision HistoryThe revision dates and numbers of the revised manuals are given on the bottom of the back cover.MANUAL NO. SIEP S800000 60APublished i

Page 256

IRUMA BUSINESS CENTER (SOLUTION CENTER)480, Kamifujisawa, Iruma, Saitama 358-8555, JapanPhone 81-4-2962-5151 Fax 81-4-2962-6138http://www.yaskawa.

Page 257 - (2) Setting Parameter Pn002.3

1.6 Examples of Servo System Configurations1-15Outline1.6.2 Connecting to SGDV-AE1A SERVOPACK(1) Using a Three-phase, 200-V Power Supply∗1. Use a

Page 258

1 Outline1.6.2 Connecting to SGDV-AE1A SERVOPACK1-16(2) Using a Single-phase, 200-V Power SupplyThe Σ-V Series SERVOPACK for a 200-V power supply

Page 259 - (2) Related Parameter

1.6 Examples of Servo System Configurations1-17Outline1.6.3 Connecting to SGDV-DE1A SERVOPACK∗1. Use a 24-VDC power supply with double insulation

Page 260 - Dividing

1 Outline1-181.7 SERVOPACK Model DesignationSelect the SERVOPACK according to the applied servomotor.∗ The SGDV-470A, 550A, 590A,780A, 210D, 260D, 28

Page 261

1.8 Inspection and Maintenance1-19Outline1.8 Inspection and MaintenanceThis section describes the inspection and maintenance of SERVOPACK.(1) SERVOPA

Page 262

2-1Panel Display and Operation of Digital Operator2Panel Display and Operation of Digital Operator2.1 Panel Display . . . . . . . . . . . . . . . .

Page 263 - 8.3.5 Electronic Gear

2 Panel Display and Operation of Digital Operator2.1.1 Status Display2-22.1 Panel DisplayThe servo status can be checked on the panel display of the

Page 264 - 8.3.6 Alarm Detection

iv Manuals Related to the Σ-V SeriesRefer to the following manuals as required.NameSelecting Models and Peripheral DevicesRatings and Specificati

Page 265 - 8.3.7 Analog Monitor Signal

2.2 Utility Function Mode (Fn)2-3Panel Display and Operation of Digital Operator2.2 Utility Function Mode (Fn)The setup and adjustment function

Page 266 - Troubleshooting

2 Panel Display and Operation of Digital Operator2.3.1 Parameter Classifications2-42.3 Parameter (Pn) OperationThis section describes the classif

Page 267 - 9.1 Troubleshooting

2.3 Parameter (Pn) Operation2-5Panel Display and Operation of Digital Operator2.3.3 Parameter Setting Methods(1) Setting Method for Numeric Parame

Page 268

2 Panel Display and Operation of Digital Operator2.3.3 Parameter Setting Methods2-6(2) Setting Method for Selection ParametersThe following example

Page 269 - 9.1.1 List of Alarms

2.4 Monitor Mode (Un)2-7Panel Display and Operation of Digital Operator2.4 Monitor Mode (Un)The monitor mode can be used for monitoring the ref

Page 270 - 9.1 Troubleshooting

3-1Wiring and Connection3Wiring and Connection3.1 Main Circuit Wiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 271

3 Wiring and Connection3.1.1 Main Circuit Terminals3-23.1 Main Circuit WiringThe names and specifications of the main circuit terminals are given on

Page 272

3.1 Main Circuit Wiring3-3Wiring and Connection∗1. Do not short-circuit the B1/ and B2 terminals. Doing so may damage the SERVOPACK.∗2. The 1 and

Page 273

3 Wiring and Connection3.1.2 Using a Standard Power Supply Input (Single-phase 100-V, Three-phase 200-V, or Three-phase 400-V)3-4(2) SERVOPACK Main

Page 274

3.1 Main Circuit Wiring3-5Wiring and Connection(3) Typical Main Circuit Wiring ExamplesNote the following points when designing the power ON sequence

Page 275

v Safety InformationThe following conventions are used to indicate precautions in this manual. Failure to heed precautions pro-vided in this manual c

Page 276

3 Wiring and Connection3.1.2 Using a Standard Power Supply Input (Single-phase 100-V, Three-phase 200-V, or Three-phase 400-V)3-6 Single-phase 100

Page 277

3.1 Main Circuit Wiring3-7Wiring and Connection• SGDV-470A, 550A, 590A, 780A Three-phase 400 V, SGDV-D• SGDV-1R9D, 3R5D, 5R4D, 8R4D, 120D, 170D2K

Page 278

3 Wiring and Connection3.1.2 Using a Standard Power Supply Input (Single-phase 100-V, Three-phase 200-V, or Three-phase 400-V)3-8• SGDV-210D, 260D,

Page 279

3.1 Main Circuit Wiring3-9Wiring and Connection(4) Power Supply Capacities and Power LossesThe following table gives the power capacities and power l

Page 280

3 Wiring and Connection3.1.2 Using a Standard Power Supply Input (Single-phase 100-V, Three-phase 200-V, or Three-phase 400-V)3-10(5) Molded-case Ci

Page 281

3.1 Main Circuit Wiring3-11Wiring and Connection470A, 550A• Available rated current for molded-case circuit breaker: 60 A or less• Available rated cu

Page 282

3 Wiring and Connection3.1.3 Using the SERVOPACK with Single-phase, 200-V Power Input3-123.1.3 Using the SERVOPACK with Single-phase, 200-V Power In

Page 283

3.1 Main Circuit Wiring3-13Wiring and Connection(3) SERVOPACK Main Circuit Wire∗ The official model name is SGDV-120AE1A008000.(4) Wiring Example wit

Page 284

3 Wiring and Connection3.1.3 Using the SERVOPACK with Single-phase, 200-V Power Input3-14(5) Power Supply Capacities and Power LossesThe following t

Page 285

3.1 Main Circuit Wiring3-15Wiring and Connection3.1.4 Using the SERVOPACK with a DC Power Input(1) Parameter SettingsWhen using the SERVOPACK with a

Page 286

viSafety PrecautionsThese safety precautions are very important. Read them before performing any procedures such as storage and transportation, in

Page 287 - 9.2 Warning Displays

3 Wiring and Connection3.1.4 Using the SERVOPACK with a DC Power Input3-16(3) Wiring Examples with DC Power Supply Input SERVOPACK SGDV-A with 2

Page 288 - 9.2 Warning Displays

3.1 Main Circuit Wiring3-17Wiring and Connection3.1.5 Using More Than One SERVOPACKThis section shows an example of the wiring when more than one SER

Page 289

3 Wiring and Connection3.1.6 General Precautions for Wiring3-183.1.6 General Precautions for WiringTo ensure safe, stable application of the servo s

Page 290

3.2 I/O Signal Connections3-19Wiring and Connection3.2 I/O Signal ConnectionsThis section describes the names and functions of I/O signals (CN1). Als

Page 291

3 Wiring and Connection3.2.2 Safety Function Signal (CN8) Names and Functions3-20(2) Output SignalsNote: For more information on the allocation of /

Page 292

3.2 I/O Signal Connections3-21Wiring and Connection3.2.3 Example of I/O Signal ConnectionsThe following diagram shows a typical connection example.∗1

Page 293 - Conditions of the Servomotor

3 Wiring and Connection3.3.1 Input Signal Allocations3-223.3 I/O Signal AllocationsThis section describes the I/O signal allocations.3.3.1 Input Sig

Page 294

3.3 I/O Signal Allocations3-23Wiring and Connection∗1. For details, refer to the manual of the connected command option module. ∗2. Allocation is not

Page 295

3 Wiring and Connection3.3.2 Output Signal Allocation3-243.3.2 Output Signal AllocationOutput signals are allocated as shown in the following table.

Page 296

3.4 Connection to Host Controller3-25Wiring and Connection3.4 Connection to Host ControllerThis section shows examples of SERVOPACK I/O signal connec

Page 297 - (cont’d)

vii Storage and Transportation Installation CAUTION• Do not store or install the product in the following locations.Failure to observe this caution

Page 298 - Appendix

3 Wiring and Connection3.4.1 Sequence Input Circuits3-26(2) Safety Input CircuitAs for wiring input signals for safety function, input signals make

Page 299 - 10.1 List of Parameters

3.4 Connection to Host Controller3-27Wiring and Connection3.4.2 Sequence Output CircuitsThe following diagrams show examples of how output circuits c

Page 300 - (Refer to 3.1.4)

3 Wiring and Connection3.4.2 Sequence Output Circuits3-28(3) Safety Output CircuitExternal device monitor (EDM1), an output signal of safety functio

Page 301 - (Refer to 5.1.3)

3.5 Wiring Communications Using Command Option Modules3-29Wiring and Connection3.5 Wiring Communications Using Command Option ModulesThe following di

Page 302 - (Refer to 9.2.1)

3 Wiring and Connection3.6.1 Encoder Signal (CN2) Names and Functions3-303.6 Encoder ConnectionsThis section shows the names and functions of the en

Page 303 - (Refer to 3.1.3)

3.6 Encoder Connections3-31Wiring and Connection(2) Absolute Encoder∗1. The pin numbers for the connector wiring of the absolute encoder depend on th

Page 304 - (Refer to 4.3.3)

3 Wiring and Connection3.7.1 Connecting Regenerative Resistors3-323.7 Regenerative Resistors ConnectionsIf the ability to absorb regenerative energy

Page 305 - (Refer to 5.9.2)

3.7 Regenerative Resistors Connections3-33Wiring and Connection(3) SERVOPACKs: Model SGDV-470A, 550A, 590A, 780A, 210D, 260D, 280D, 370DNo built-in r

Page 306 - (Refer to 5.3.1, 5.4.1)

3 Wiring and Connection3.7.2 Setting Regenerative Resistor Capacity3-343.7.2 Setting Regenerative Resistor CapacityWhen an external regenerative res

Page 307 - 10.1.2 Parameters

3.8 Noise Control and Measures for Harmonic Suppression3-35Wiring and Connection3.8 Noise Control and Measures for Harmonic SuppressionThis section d

Page 308 - (Refer to 5.2)

viii Wiring CAUTION• Be sure to wire correctly and securely.Failure to observe this caution may result in motor overrun, injury, or malfunction.•

Page 309 - (Refer to 6.16)

3 Wiring and Connection3.8.1 Wiring for Noise Control3-36(1) Noise FilterThe SERVOPACK has a built-in microprocessor (CPU), so protect it from exter

Page 310 - (Refer to 5.8.2)

3.8 Noise Control and Measures for Harmonic Suppression3-37Wiring and Connection3.8.2 Precautions on Connecting Noise FilterThis section describes th

Page 311

3 Wiring and Connection3.8.2 Precautions on Connecting Noise Filter3-38Connect the noise filter ground wire directly to the ground plate.Do not conn

Page 312

3.8 Noise Control and Measures for Harmonic Suppression3-39Wiring and Connection3.8.3 Connecting AC/DC Reactor for Harmonic SuppressionThe SERVOPACK

Page 313

4-1Operation4Operation4.1 Option Module Function Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-24.1.1 Setting Switches S

Page 314 - (Refer to 4.2.7)

4 Operation4.1.1 Setting Switches S1 and S2 for Option Module Functions4-24.1 Option Module Function SettingsThis section describes how to set the o

Page 315

4.2 Settings for Common Basic Functions4-3Operation4.2 Settings for Common Basic FunctionsThis section explains the settings for the common basic fun

Page 316

4 Operation4.2.2 Servomotor Rotation Direction4-44.2.2 Servomotor Rotation DirectionThe servomotor rotation direction can be reversed with parameter

Page 317 - 1073741824

4.2 Settings for Common Basic Functions4-5Operation4.2.3 OvertravelThe overtravel limit function forces movable machine parts to stop if they exceed

Page 318

4 Operation4.2.3 Overtravel4-6(3) Servomotor Stopping Method When Overtravel is UsedThere are three servomotor stopping methods when an overtravel i

Page 319 - 10.2 Monitor Modes

ix Operation Maintenance and Inspection CAUTION• Always use the servomotor and SERVOPACK in one of the specified combinations.Failure to observe thi

Page 320

4.2 Settings for Common Basic Functions4-7Operation(4) Overtravel Warning FunctionThis function detects an overtravel warning (A.9A0) if overtravel o

Page 321

4 Operation4.2.4 Electronic Gear4-84.2.4 Electronic GearThe electronic gear enables the workpiece travel distance per input reference pulse from the

Page 322

4.2 Settings for Common Basic Functions4-9Operation Encoder ResolutionEncoder resolution can be checked with servomotor model designation.(2) Proced

Page 323

4 Operation4.2.4 Electronic Gear4-10(3) Electronic Gear Ratio EquationRefer to the following equation to determine the electric gear ratio.(4) Elect

Page 324

4.2 Settings for Common Basic Functions4-11Operation4.2.5 Encoder Output PulsesEncoder output pulse is the signal which processes the encoder output

Page 325

4 Operation4.2.6 Encoder Output Pulse Setting4-124.2.6 Encoder Output Pulse SettingSet the encoder output pulse using the following parameter.Pulses

Page 326

4.2 Settings for Common Basic Functions4-13Operation4.2.7 Holding BrakesA holding brake is a brake used to hold the position of the movable part of t

Page 327

4 Operation4.2.7 Holding Brakes4-14Note: The above operation delay time is an example when the power supply is turned ON and OFF on the DC side.Be s

Page 328

4.2 Settings for Common Basic Functions4-15Operation(2) Brake Signal (/BK) SettingThis output signal controls the brake. The allocation of the /BK si

Page 329 - MANUAL NO. SIEP S800000 60E

4 Operation4.2.7 Holding Brakes4-16(3) Brake Signal (/BK) AllocationUse parameter Pn50F.2 to allocate the /BK signal.(4) Brake ON Timing after the S

Comments to this Manuals

No comments